Q 1 :    

If A denotes the sum of all the coefficients in the expansion of (1-3x+10x2)n and B denotes the sum of all the coefficients in the expansion of (1+x2)n, then                    [2024]

  • B=A3

     

  • 3A=B

     

  • A=3B

     

  • A=B3

     

(4)

Putting x=1 in (1-3x+10x2)n, we get

A=(1-3+10)n=8n                                               ...(i)

Putting x=1 in (1+x2)n, we get

B=(1+1)n=2n                                                          ...(ii)

From (i) and (ii), we get A=B3

 



Q 2 :    

The sum of all rational terms in the expansion of (1+21/3+31/2)6 is equal to __________.          [2025]



(612)

Given, (1+21/3+31/2)6

   The general term of multinomial expansion is 6!x!y!z!(1)x(21/3)y(31/2)z

For terms to be rational 3 divides y and 2 divides z.

   

x y z
6 0 0
4 0 2
2 0 4
0 0 6
3 3 0
1 3 2
0 6 0

   Required sum = 6!6!0!0!+6!4!0!2!×3+6!2!0!4!×(3)2+6!0!0!6!(3)3+6!3!3!0!(2)+6!1!3!2!(2)×(3)+6!0!6!0!(2)2

= 1 + 45 + 135 + 27 + 40 + 360 + 4 = 612



Q 3 :    

Let (1+x+x2)10=a0+a1x+a2x2+...+a20x20. If (a1+a3+a5+...+a19)11a2=121k, then k is equal to __________.          [2025]



(239)

(1+x+x2)10=a0+a1x+a2x2+...+a20x20

Put x = 1, we have

310=a0+a1+a2+.....+a20          ... (i)

Put x = –1, we have

1=a0a1+a2+.....+a20          ... (ii)

Subtracting equation (ii) from (i),

a1+a3+...+a19=31012=29524

Also, {1+x(1+x)}10=1+C110x(1+x)+C210x2(1+x)2+...

  a2=C110+C210=55

  k=(a1+a3+...+a19)11a2121=29524605121=239.