Q 21 :    

If the co-efficient of x9 in (αx3+1βx)11 and the co-efficient of x-9 in (αx-1βx3)11 are equal, then (αβ)2 is equal to ________ .            [2023]



(1)

(r+1)th term in (αx3+1βx)11=Cr11α11-r·β-r·x33-4r

Here, 33-4r=9r=6

  Coefficient of x9=C611α5β-6

(r+1)th term in (αx-1βx3)11=Cr11α11-r(-1β)r·x11-4r

Here, 11-4r=-9r=5

 Coefficient of x-9=-C511α6β-5

Now, C611α5β6=-C511α6β5  [Given]1β=-α(αβ)2=1



Q 22 :    

Let α>0, be the smallest number such that the expansion of (x23+2x3)30 has a term βx-α,βN. Then α is equal to ________ .               [2023]



(2)

Here, Tr+1=Cr30(x2/3)30-r(2x3)r

=Cr30x(20-2r3-3r)(2)r=Cr30(2)rx(60-11r3); 0r30

For βx-α, α>0, r=6, and  T7=C630(2)6x-2α=2



Q 23 :    

The coefficient of x-6, in the expansion of (4x5+52x2)9, is __________ .                 [2023]



(5040)

Tr+1=Cr9(4x5)9-r(52x2)r

=Cr9(45)9-r (52)r·x9-r-2rx9-r-2r=x-6

9-r-2r=-6 3r=15 r=5

So, T6=C59(45)4(52)5x-6

=9!5!4!(4×4×4×45×5×5×5)(5×5×5×5×52×2×2×2×2)x-6

=9·8·7·64·3·2(8)(5)x-6=126×40·x-6=5040



Q 24 :    

If the constant term in the binomial expansion of (x522-4xl)9 is -84 and the coefficient of x-3l is 2αβ, where β<0 is an odd number, then |αl-β| is equal to __________ .               [2023]



(98)

Tr+1=Cr9 (x5/2)29-r9-r(-4xl)r

=(-1)rCr929-r4rx452-5r2-lr45-5r-2lr=0

r=455+2l  (i)

Now, according to the question,  (-1)rCr929-r4r=-84

(-1)rCr923r-9=-21×4

Only natural value of r possible if 3r-9=0 r=3 and C39=84

From equation (i): l=5

For coefficient of x-3l:  452-5r2-lr=-3l452-5r2-5r=-3lr=5

   The coefficient of x-3l is C59(-1)4524=2α×β

α=7,  β=-63

  Value of |αl-β|=7×5+63=35+63=98



Q 25 :    

The sum of all rational terms in the expansion of (215+513)15 is equal to              [2024]

  • 3133

     

  • 633

     

  • 931

     

  • 6131

     

(1)

We have, (21/5+51/3)15

     Tr+1=Cr15(21/5)15-r(51/3)r=Cr155r/32(3-r5)

For rational terms, r3 and r5 must be an integer

    3 and 5 divide r15 divides rr=0 and r=15

Hence, C0155023+C15155520

      Required sum = 8 + 3125 = 3133

 



Q 26 :    

If the constant term in the expansion of (35x+2x53)12,x0, is α×28×35, then 25α is equal to:               [2024]

  • 639

     

  • 742

     

  • 724

     

  • 693

     

(4)

Tr+1=Cr12(31/5x)12-r(2x51/3)r

=Cr12(312-r55r/3)·2r·x2r-12

For constant term, 2r-12=0

r=6

      Constant term = C6·1236/5·2652

=924×3131/5·2625=11×9×7×28×31/525

α=11×9×72525α=11×9×7=693

 



Q 27 :    

If the term independent of x in the expansion of (ax2+12x3)10 is 105, then a2 is equal to :             [2024]

  • 2

     

  • 6

     

  • 4

     

  • 9

     

(3)

We have, (ax2+12x3)10

Tr+1=Cr10(ax2)10-r(12x3)r

=Cr10(a)10-r(12)rx20-2r-3r

For the term to be independent of x, we have 20-2r-3r=0

r=4

    Required term =T5=C410(a)6(12)4=105  (given)

21016a3=105a3=8a=2

Hence, a2=4

 



Q 28 :    

The sum of the coefficient of x23 and x-25 in the binomial expansion of (x23+12x-25)9 is                   [2024]

  • 6916

     

  • 6316

     

  • 214

     

  • 194

     

(3)

Tr+1=Cr9(x-2/52)r(x2/3)9-r

=Cr912rx6-23r-25r=Cr912rx6-16r15

For coefficient of x2/3,6-16r15=23

90-16r=10

r=5

For coefficient of x-2/5,6-16r15=-25

90-16r=-6

r=6

Required sum =C59125+C69126=12625+8426

=33626=214



Q 29 :    

Let m and n be the coefficients of seventh and thirteenth terms respectively in the expansion of (13x13+12x23)18. Then (nm)13 is:        [2024]

  • 19

     

  • 14

     

  • 49

     

  • 94

     

(4)

Tr+1=Cr18(13x1/3)18-r·(12x-2/3)r

     Coefficient of 7th term =C618(13)12·(12)6

and coefficient of 13th term =C1218(13)6·(12)12

So, (nm)1/3=[C1218(13)6·(12)12C618(13)12·(12)6]1/3=94

 



Q 30 :    

If the constant term in the expansion of (1+2x-3x3)(32x2-13x)9 is p, then 108p is equal to _______.             [2024]



(54)

General term of I=(32x2-13x)9 is

Tr+1=Cr9(32x2)9-r(-13x)r

=Cr9(32)9-rx18-2rxr(-13)r

=Cr9(32)9-rr18-3r(-13)r

Now, (1+2x-3x3)(32x2-13x)9will have the constant term =1×coeff of x0 in I+2×coeff of 1x in I-3×coeff of x-3 in I

=1×C69(32)3(-13)6+2×0-3×C79(32)2(-13)7

=8423×33+3×36×122×35=72×32+22×32

=92×32=12

       p=12. So 108p=12×108=54