Q 11 :    

The coefficient of x301 in (1+x)500+x(1+x)499+x2(1+x)498+...+ x500 is               [2023]

  • C301500

     

  • C200501

     

  • C300500

     

  • C302501

     

(2)

The coefficient of x301 in

(1+x)500+x(1+x)499+x2(1+x)498++x500

=C301500+C300499+C299498++C0199

=C199500+C199499+C199498++C199199=C200501



Q 12 :    

If the coefficient of x15 in the expansion of (ax3+1bx1/3)15 is equal to the coefficient of x-15 in the expansion of  (ax1/3-1bx3)15, where a and b are positive real numbers, then for each such ordered pair (a, b)                  [2023]

  • a = 3b

     

  • a = b

     

  • ab = 1

     

  • ab = 3

     

(3)

The coefficient of x15 in the expansion of

(ax3+1bx13)15 is Tr+1=Cr15(ax3)15-r×(b-1x-13)r

=Cr15a15-r·x45-3r·b-r·x-r3=Cr15a15-r·b-rx45-3r-r3

We have to find the coefficient of x15, so x45-3r-r3=x15

45-3r-r3=15    10r3=30    r=9

So, T9+1=C915a15-9·b-9·x15; T10=C915a6·b-9·x15

 The coefficient of x15=C915a6·b-9

Now, the coefficient of x-15 in the expansion of 

(ax13-1bx3)15 is, Tr+1=C15r(ax1/3)15-r·(-1bx3)r

=C15ra15-rx15-r3·b-r·x-3r(-1)r

=Cr15a15-r·b-r·x15-r3-3r(-1)r

We need to find the coefficient of x-15, so

x15-r3-3r=x-1515-r3-3r=-15r=6

  The coefficient of x-15 =C615a9b-6

Now, according to the question, C915a6b-9=C615a9b-6

a3b3=1  ab=1



Q 13 :    

The coefficient of x18 in the expansion of (x4-1x3)15 is __________ .                [2023]



(5005)

Given, (x4-1x3)15

Tr+1=Cr15(x4)15-r(-1x3)r

=Cr15(x)60-4r·(-1)rx-3r=Cr15(x)60-7r·(-1)r

For the coefficient of x18

60-7r=18r=427=6

Hence, coefficient of x18 is C615(-1)6=5005



Q 14 :    

If the constant term in the expansion of (3x2-12x5)7 is α, then [α] is equal to _______ .             [2023]



(1275)

Let the rth term be the constant term of the given expansion.

   Tr+1=Cr7(3x2)7-r·(-12x5)r=Cr737-r·(-12)r·x14-2r-5r

For constant term, put 14-2r-5r=07r=14r=2

  T2+1=C2737-2(-12)2=21×35×14

α=1275.75[α]=1275



Q 15 :    

The number of integral terms in the expansion of (31/2+51/4)680 is equal to ___________ .              [2023]



(171)

The expansion of the general term is

=Cr680(31/2)680-r(51/4)r=Cr6803680-r25r4

Possible values of r, where r4 is an integer

         r=0,4,8,12,,680

All these values of r are accepted as well.

Hence, number of integral terms=171



Q 16 :    

Let α be the constant term in the binomial expansion of (x-6x32)n,n15. If the sum of the coefficients of the remaining terms in the expansion is 649 and the coefficient of x-n is λα, then λ is equal to _________ .                        [2023]



(36)

General term in the expansion of (x-6x3/2)n is given by
Tr+1=Crn(x)n-r2(-6)r(x)-32r

For the constant term, the power of x should be zero.

n-r2-32r=0n-4r=0r=n4

For the constant term, put x=1 in (x-6x3/2)n

Constant term, (-5)n

   Sum of coefficients except constant term is (-5)n-Cn/4n(-6)n/4=649

Put n=4, 625+24=649

Thus, n=4 satisfies the above equation.

Now, r=n4=44=1

Required coefficient of x-4 = C34(-6)3=4(-216)

and constant term a=C14(-6)1=4(-6)

   4(-216)=λ[4(-6)]λ=36



Q 17 :    

Let the sixth term in the binomial expansion of (2log2(10-3x)+2(x-2)log235)m, in the increasing powers of 2(x-2)log23, be 21. If the binomial coefficients of the second, third and fourth terms in the expansion are respectively the first, third and fifth terms of an A.P., then the sum of the squares of all possible values of x is _______ .     [2023]



(4)

Sixth term T6=C5m(10-3x)m-52·(3x-2)=21  ...(i)

C1m,C2m,C3m are in A.P.2C2m=C1m+C3m

2·m!(m-2)!2!=m!(m-1)!1!+m!(m-3)!3!

   m=7,2 (Rejected)

Put m=7 in equation (i):

C57(10-3x)7-52·(3x-2)=2121·(10-3x)·3x9=21

x=0,2

Sum of the squares of all possible values of x is 02+22=4



Q 18 :    

If the term without x in the expansion of (x23+αx3)22 is 7315, then |α| is equal to ________ .               [2023]



(1)

Tr+1=Cr22(x23)22-r·(αx3)r 

=Cr22·(x443-2r3-3r)·(αr)

For the term without 'x'; 443-2r3-3r=0443=11r3

  r=4

So, the term without x is C422α4=7315

22×21×20×1924·α4=7315

  |α|=1



Q 19 :    

The constant term in the expansion of (2x+1x7+3x2)5 is _______.                  [2023]



(1080)

General term=5!r1!r2!r3!(2x)r1(x-7)r2(3x2)r3

=5!r1!r2!r3!2r1·3r3·xr1-7r2+2r3

For the constant term, r1-7r2+2r3=0 and r1+r2+r3=5

By hit and trial, r1=1, r2=1 and r3=3.

  Constant term=5!1!1!3!21·33

                                   =1206×2×27=20×2×27=1080



Q 20 :    

Let the coefficients of three consecutive terms in the binomial expansion of (1+2x)n be in the ratio 2:5:8.Then the coefficient of the term, which is in the middle of these three terms, is _________ .               [2023]



(1120)

Coefficient of (r+1)th term is,   

tr+1=Crn(2x)r

Given consecutive term ratio as,

Cr-1n(2)r-1Crn(2)r=25n!/(r-1)!(n-r+1)!n!(2)/r!(n-r)!=25 

rn-r+1=455r=4n-4r+49r=4(n+1)  ...(i)

Again, consecutive term ratio are,

Crn(2)rCr+1n(2)r+1=58n!/r!(n-r)!n!/(r+1)!(n-r-1)!=54

r+1n-r=545n-4=9r  ...(ii) 

From (i) and (ii):  n=8, r=4

So, coefficient of middle term is,  

C4824=16×8×7×6×54×3×2×1=1120