Q 11 :    

The term independent of x in the expansion of ((x+1)(x2/3+1x1/3)(x1)(xx1/2))10, x>1, is:         [2025]

  • 120

     

  • 240

     

  • 210

     

  • 150

     

(3)

We have, ((x+1)(x23+1x13)(x1)(xx12))10

=((x13+1)(x+1x))10=(x131x)10

Tr+1=Cr10(x)10r3(1)r(x)r2

Since, the term is independent of x, then 10r3r2=0

  (20 – 2r) – 3r = 0  r = 4.

Hence, the required term is C410(1)4=210.



Q 12 :    

In the expansion of (23+133)n, nN, if the ratio of 15th term from the beginning to the 15th term from the end is 16, then the value of C3n is          [2025]

  • 4960

     

  • 4060

     

  • 1040

     

  • 2300

     

(4)

Given, (23+133)n, nN

Now, Tr+1=Crn·(23)nr(133)r

  T15=C14n·(23)n14(133)14

15th term from end = Tn13 from beginning

 Tn13=Cn14n·(23)14(133)n14

But T15Tn13=C14n(23)n14(133)14Cn14n(23)14(133)n14=16

 (23)n28×(33)n28=61  (63)n28=61

 n283=1  n=25

So, C3n=C325=2300.



Q 13 :    

The number of integral terms in the expansion of (512+718)1016 is          [2025]

  • 129

     

  • 127

     

  • 130

     

  • 128

     

(4)

Tr+1=Cr 101651016r27r/8, represents the (r+1)th term of (51/2+71/8)1016.

As Tr+1 represent an integral term when r is a multiple of 8

i.e., r = 0, 8, 16, 24, ....., 1016

Now, 1016 = 0 + (n – 1)8          [As this form an A.P.]

 n1=127  n=128

So, 128 terms are integral terms.



Q 14 :    

For some n10, let the coefficients of the 5th, 6th and 7th terms in the binomial expansion of (1+x)n+4 be in A.P. Then the largest coefficient in the expansion of (1+x)n+4 is:          [2025]

  • 35

     

  • 20

     

  • 10

     

  • 70

     

(1)

Coefficient of 5th, 6th and 7th terms of the expansion of (1+x)n+4 are C4n+4, C5n+4 and C6n+4 respectively. As C4n+4, C5n+4 and C6n+4 are in A.P.

 2×C5n+4=C4n+4+C6n+4

 25(n1)=1n(n1)+130 25(n1)=30+n2n30n(n1)

 12n=30+n2n  n213n+30=0

 (n3)(n10)=0  n=3          [ n10]

Here, n + 4 = 3 + 4 = 7

   Largest binomial coefficient in expansion (1+x)7 = Coefficient of middle term = C47 or C37=35.



Q 15 :    

The least value of n for which the number of integral terms in the Binomial expansion of (73+1112)n is 183, is :          [2025]

  • 2148

     

  • 2184

     

  • 2196

     

  • 2172

     

(2)

General term = Crn(71/3)nr(111/12)r

                      = Crn(7)nr3(11)r/12

For integral terms, r must be multiple of 12

   r = 12k, k = 0, 1, 2, .....

Total number of values of r = 183

Hence, max r = 12(182) = 2184

Minimum value of n = 2184.