Q 11 :    

The largest natural number n such that 3n divides 66! is _______ .               [2023]



(31)

The largest prime p in n! is 

Ep(n!)=[np]+[np2]+[np3]+

Here, p = 3 is a prime number and n = 66

    E3(66!)=[663]+[669]+[6627]+[6681]+

=22+7+2+0+=31        66!=331

The maximum exponent of 3 is 31.



Q 12 :    

The remainder, when 7103 is divided by 17, is ________ .             [2023]



(12)

7103=7.7102

7.7102=7(72)51=7(49)51=7(51-2)51

=7(-2)51=-7(2)51=-7(248+3)=-7.8(248)

=-56(24)12=-56(17-1)12=-56×(-1)12=(-56)

Remainder=12



Q 13 :    

The remainder, when 19200+23200 is divided by 49, is ________ .            [2023]



(29)

23200+19200=(21+2)200+(21-2)200

=2[C02002120020+C22002119822++C2002002102200]         ...(i)

Now, 212 will be divisible by 49, so (i) can be written as 2[49λ+2200]

2[49λ+2200]49 then, Remainder=220149=(8)6749=(7+1)6749

=C067767·10+C167766·1++C66677·166+C67·16749

Remainder=67×7+149         [other terms will be divisible by 49]

=(49+18)×7+149,  Remainder=29



Q 14 :    

Suppose r=02023 r2 Cr2023=2023×α×22022. Then the value of α is ___________ .            [2023]



(1012)

r=02023r2 Cr2023=2023×α×22022

r=0nr2·Crn=n(n+1)·2n-2

Then, r=02023r2·Cr2023=(2023)(2023+1)·22023-2

         =2023×2024×22021=2023×α×22022

  2α=2024    α=1012



Q 15 :    

Let the sum of the coefficients of the first three terms in the expansion of (x-3x2)n, x0,nN, be 376.  Then the coefficient of x4 is ___________ .      [2023]



(405)

Sum of coefficients of first three terms of (x-3x2)n is 376.

C0n-C1n·3+C2n·32=376 1-3n+n(n-1)2×9=376

3n2-5n-250=0    n=10

Now, Tr+1=Cr10x10-r(-3x2)r=Cr10(-3)r·x10-3r

For coefficient of x410-3r=4r=2

Coefficient of x4=C210(-3)2=405



Q 16 :    

The remainder when (2023)2023 is divided by 35 is __________ .         [2023]



(7)

(2023)2023=(2030-7)2023=(35K-7)2023

=C02023(35K)2023(-7)0+C12023(35K)2022(-7)1++C20232023(-7)2023

=35N-72023

Now, -72023=-7×72022=-7(72)1011=-7(50-1)1011

=-7[C0(50)10111011-C11011(50)1010++C10111011]

=-7(5λ-1)=35λ+7

When (2023)2023 is divided by 35, remainder is 7.



Q 17 :    

50th root of a number x is 12 and 50th root of another number y is 18. Then the remainder obtained on dividing (x + y) by 25 is _________ .          [2023]



(23)

Given,  x1/50=12x=(12)50

y1/50=18y=(18)50

  x+y25=remainderx+y25=1250+185025

125025+(18)5025=(144)25+(324)2525=(150-6)25+(325-1)2525

=25k-(625+1)25=25k-[(5+1)25+1]25=25k1-225

   Remainder=23



Q 18 :    

The remainder on dividing 599 by 11 is _________ .                [2023]



(9)

We have, 599=54×595=625×(55)19

=625×(3125)19=625×(3124+1)19

=625×(11λ+1)19  [11×284=3124]

    Remainder=9



Q 19 :    

If the coefficients of x4,x5 and x6 in the expansion of (1+x)n are in the arithmetic progression, then the maximum value of n is:               [2024]

  • 14

     

  • 21

     

  • 7

     

  • 28

     

(1)

As (1+x)n=C0n+C1nx1+C2nx2++Cnnxn

     C5n-C4n=C6n-C5n  [Since,C4n,C5nandC6n are in A.P.]

n!5!(n-5)!-n!4!(n-4)!=n!6!(n-6)!-n!5!(n-5)!

n-95!(n-5)!(n-4)=n-116!(n-6)!(n-5)

6(n-9)=(n-11)(n-4)

n2-21n+98=0n=21±441-3922=14,7

     nmax=14

 

 



Q 20 :    

The coefficient of x70 in x2(1+x)98+x3(1+x)97+x4(1+x)96++x54(1+x)46 is Cp-Cq.4699 Then a possible value of p+q is:               [2024]

  • 68

     

  • 83

     

  • 55

     

  • 61

     

(2)

We have, x2(1+x)98+x3(1+x)97++x54(1+x)46

It is a G.P. with first term =x2(1+x)98

and common ratio =x1+x

     Sum of these terms =x2(1+x)98((x1+x)53-1x1+x-1)

=x2(1+x)98((1+x)-x53(1+x)-52)

=x2(1+x)99coeff.of x68-x55(1+x)46coeff. of x15                      [ we need coefficient of x70]

=C6899-C1546=Cp99-Cq46              ( Given)

Hence, p+q=83