Q 71 :

Let y=y(x) be the solution of the differential equation (x2-3y2)dx+3xydy=0, y(1)=1. Then 6y2(e) is equal to       [2023]

  • e2

     

  • 32e2

     

  • 3e2

     

  • 2e2

     

(4)

(x2-3y2)dx+3xydy=0

x2dx-3y2dx+3xydy=0x2-3y2+3xydydx=0

Put t=y22ydydx=dtdxx2-3t+3x2dtdx=0

2x3-2tx+dtdx=0 dtdx-2tx=-2x3,

which is a linear differential equation.

I.F.=e-2xdx=e-2ln|x|=eln1x2=1x2

So, t·1x2=1x2(-2x3)dxy2x2=-23ln|x|+C

When, x=1,y=1

1=-23ln(1)+CC=1                y2x2=-23ln|x|+1

At x=e, y2(e)e2=-23+1y2(e)=e236y2(e)=2e2



Q 72 :

Let y=y(x) be the solution curve of the differential equation dydx=yx(1+xy2(1+logex)),x>0, y(1)=3. Then, y2(x)9 is equal to     [2023]

  • x25-2x3(2+logex3)

     

  • x23x3(1+logex2)-2

     

  • x27-3x3(2+logex2)

     

  • x22x3(2+logex3)-3

     

(1)

Let y=vx; dydx=v+xdvdx

v+xdvdx=v+v3x3(1+logex)

v-3dv=(x2+x2logex)dx

v-2-2=x33+logxx33-x23dx=x33+x33logx-x39+C

-x22y2=29x3+x33logx+c; y(1)=3

-12×9=29+CC=-518

-x22y2=29x3+x33logx-5189y2=4x3+6x3logx-5-x2

y2(x)9=x25-2x3(2+logx3)



Q 73 :

Let y=y(t) be a solution of the differential equation dydt+αy=γe-βt where, α>0,β>0 and γ>0. Then limty(t)        [2023]

  • is -1

     

  • is 0

     

  • is 1

     

  • does not exist

     

(2)

dydt+αy=γe-βt

I.F.=eαdt=eαt

Solution is given by

y·eαt=eαt·γe-βtdt=γe(α-β)tdt

y·eαt=γe(α-β)tα-β+cy=γα-βe-βt+ce-αt

So, limty(t)=γα-βlimte-βt+climte-αt=0



Q 74 :

Let y=f(x) be the solution of the differential equation y(x+1)dx-x2dy=0,y(1)=e. Then limx0+f(x) is equal to         [2023]

  • 1e2

     

  • 1e    

     

  • 0

     

  • e2

     

(3)

Given differential equation, y(x+1)dx-x2dy=0

dydx=y(x+1)x2

On integrating, 1ydy=x+1x2dxlny=lnx-1x+C

Given y(1)=e, that is at x=1,y=e

So, lne=ln1-1+CC=2

So, lny=lnx-1x+2

y=xe-1x+2limx0+xe-1x+2=0



Q 75 :

Let y=y(x) be the solution of the differential equation xlogexdydx+y=x2logex,(x>1). If y(2)=2, then y(e) is equal to          [2023]

  • 1+e22

     

  • 4+e24

     

  • 1+e24

     

  • 2+e22

     

(2)

Given: xlogexdydx+y=x2logex(x>1)

dydx+yxlnx=x  which is a linear differential equation.

whose Integrating factor is given by

I.F.=e1xlnxdx=ln|x|

    yln|x|=x22lnx-1x·x22dx                       ...(i)

yln|x|=ln|x|x22-x24+C

Also, y(2)=2C=1

On substituting the value of C in (i), we get

       y(x)=x22-x24|ln(x)|+1|ln(x)|

y(e)=e22-e24+1=1+e24 or 4+e24



Q 76 :

Let the solution curve y=y(x) of the differential equation dydx-3x5tan-1(x3)(1+x6)3/2y=2xexp{x3-tan-1x3(1+x6)} pass through the origin. Then y(1) is equal to      [2023]

  • exp{4+π42}

     

  • exp{4-π42}

     

  • exp{1-π42}

     

  • exp{π-442}

     

(2)

Given differentiate equation is

dydx-3x5tan-1(x3)(1+x6)3/2y=2xexp{x3-tan-1x3(1+x6)},

Which is in the form dydx+Py=Q

Here, P=-3x5tan-1(x3)(1+x6)3/2, Q=2xexp{x3-tan-1x31+x6}

Let I=-3x5tan-1x3(1+x6)3/2dx

Put x3=tanθ  3x2dx=sec2θdθ

I=-tanθ·θsec3θ×sec2θdθ=-θ·sinθdθ

=-[θsinθdθ-(sinθdθ)dθ]

=-[-θ·cosθ+sinθ]=-[x31+x6-tan-1(x3)·11+x6]

    I.F.=epdx=eI

Solution of the D.E. is

y·eI=eI·2x·exp{x3-tan-1(x3)1+x6}dx

=2x·e-x3+tan-1(x3)1+x6·ex3-tan-1(x3)1+x6dx

=2x·dx=x2+c                     yeI=x2+c

  y=x2exp{-tan-1(x3)+x31+x6}+cexp{x3-tan-1(x3)1+x6}

This curve passes through the origin.

So, 0=0+cc=0

The required solution is

         y(x)=x2exp{x3-tan-1(x3)1+x6}

At x=1    y(1)=exp(1-π42)=exp(4-π42)



Q 77 :

The solution of the differential equation dydx=-(x2+3y23x2+y2), y(1)=0 is           [2023]

  • loge|x+y|-xy(x+y)2=0

     

  • loge|x+y|-2xy(x+y)2=0

     

  • loge|x+y|+xy(x+y)2=0

     

  • loge|x+y|+2xy(x+y)2=0

     

(4)

Given, dydx=-[x2+3y23x2+y2], y(1)=0

Substitute y=vxdydx=v+xdvdx

      v+xdvdx=-[x2+3v2x23x2+v2x2]=-[1+3v23+v2]

xdvdx=-[1+3v23+v2]-v=-[1+3v2+3v+v33+v2]

xdvdx=-(1+v)33+v23+v2(1+v)3dv=-dxx

1+v2+2v-2v+2(1+v)3dv=-dxx

1(1+v)dv+21-v(1+v)3dv=-dxx

Substitute 1+v=t  v=t-1  dv=dt

  dtt+21-t+1t3dt=-lnx+C

 loget+2(2-tt3)dt=-logex+C

 loget+2(2t-3-t-2)dt=-logex+C

 loge|yx+1|+2[-t-2+t-1]=-logex+C

 loge|y+xx|+2[-1(1+yx)2+1yx+1]=-logex+C

 loge|y+x|+2[-x2(y+x)2+xy+x]=C

 loge|y+x|+2xy(y+x)2=C

We have y(1)=0C=0.

 loge|x+y|+2xy(x+y)2=0



Q 78 :

Let a differentiable function f satisfy f(x)+3xf(t)tdt=x+1, x3. Then 12f(8) is equal to:             [2023]

  • 19

     

  • 17

     

  • 1

     

  • 34

     

(2)

We have, f(x)+3xf(t)tdt=x+1, x3

On differentiating, we get  

f'(x)+f(x)x=12x+1dydx+1xy=12x+1

I.F.=e1xdx=elnx=x

Solution; xy=x2x+1dx

Put x+1=t2; dx=2tdt

xy=(t2-1)2tdt2t=(t2-1)dt=t33-t+C

=(x+1)33-x+1+C

At x=3,y=2

  3×2=(3+1)33-3+1+C6=83-2+C C=163

  f(x)=(x+1)33x-x+1x+163x

Now, 12f(8)=12[(8+1)33×8-8+18+163×8]=17



Q 79 :

Let y=y(x) be the solution of the differential equation (3y2-5x2)ydx+2x(x2-y2)dy=0 such that y(1)=1. Then |(y(2))3-12y(2)| is equal to      [2023]

  • 64

     

  • 322

     

  • 32 

     

  • 162

     

(2)

Given, (3y2-5x2)ydx+2x(x2-y2)dy=0

dydx=y(5x2-3y2)2x(x2-y2)

It is a homogeneous differential equation.

Put y=mxdydx=m+xdmdx

m+xdmdx=m(5-3m2)2(1-m2)xdmdx=m(5-3m2)2(1-m2)-m

xdmdx=(5-3m2)m-2m(1-m2)2(1-m2)

dxx=2(m2-1)m(m2-3)dmdxx=[2m-43m+4m3m2-3]dm

Integrating both sides dxx=(23)mdm+23(2mm2-3)dm

ln|x|=23ln|m|+23ln|m2-3|+C

ln|x|=23ln|yx|+23ln|(yx)2-3|+C

Put (x=1,y=1)ln(1)=23ln(1)+23ln|(1-3)|+C

C=-23ln(2)ln|x|=23ln|yx|+23ln|(yx)2-3|-23ln(2)

 (yx)[(yx)2-3]=2(x3/2)

Put x=2 to get y(2)y(y2-12)=4×2×2×22

y3-12y=322|y3(2)-12y(2)|=322



Q 80 :

Let y=y(x) be a solution of the differential equation (xcosx)dy+(xysinx+ycosx-1)dx=0, 0<x<π2. If π3y(π3)=3, then |π6y''(π6)+2y'(π6)| is equal to ______ .         [2023]



(2)

(xcosx)dy+(xysinx+ycosx-1)dx=0, 

0<x<π2dydx+(xsinx+cosx)xcosxy=1xcosx

I.F.=e(xsinx+cosxxcosx)dx=e(tanx+1x)dx=eln|secx|+ln|x|=eln|xsecx|

I.F.=xsecx

y×xsecx=xsecxxcosxdxy×xsecx=tanx+C

Given, y(π3)=33π

So, 33π×π3·2=3+C23=3+C  C=3

  yxsecx=tanx+3  xy=sinx+3cosx

 xy'+y=cosx-3sinx

 xy''+2y'=-sinx-3cosx

   |π6·y''(π6)+2y'(π6)|=|-12-32|=2