Let a,ar,ar2,… be an infinite G.P. If ∑n=0∞arn=57 and ∑n=0∞a3r3n=9747, then a+18r is equal to [2024]
38
46
31
27
(3)
Given, ∑n=0∞arn=57
⇒a1-r=57 ...(i)
[Sum of infinite G.P.]
Also, ∑n=0∞a3r3n=9747
i.e., a3+a3r3+…∞=9747
⇒a31-r3=9747⇒(57(1-r))31-r3=9747
(1-r)(1+r+r2)(1-r)3=19⇒19(1-r)2=1+r+r2
⇒19+19r2-38r=1+r+r2
⇒18r2-39r+18=0
⇒r=23,32⇒r=23 [∵|r|<1]
∴ a=57(1-23)⇒a=19
So, a+18r=19+12=31