Q.

Let A (a, b), B(3, 4) and C(–6, –8) respectively denote the centroid, circumcentre and orthocentre of a triangle. Then, the distance of the point P(2a + 3, 7b + 5) from the line 2x + 3y – 4 = 0 measured parallel to the line x – 2y – 1 = 0 is          [2024]

1

1756

 

2

517

 

3

1757

 

4

1557

 


Ans.

(3)

Given the A (a, b), B(3, 4) and C(–6, –8) respectively the centroid, circumcentre and orthocentre of a triangle.

We know that centroid divides circumcentre and orthocentre internally in the ratio 1 : 2

   a = 6 + 62, b = 8 + 83

   a = 0, b = 0

Therefore, the coordinates of P are (3, 5).

Also, l : 2x + 3y – 4 = 0 (Given)          ... (i)

Equation of the line passing through P(3, 5) and parallel to the line x – 2y – 1 = 0 is

y  5 = 12 (x  3)

   2y  10 = x  3

   x  2y + 7 = 0          ... (ii)

Solving equation (i) and (ii), we get

x = 137, y = 187

   Distance between (3, 5) and (137, 187) is

(3 + 137)2 + (5  187)2 = 115649 + 28949 144549 = 1757