Q.

A sphere of radius R is cut from a larger solid sphere of radius 2R as shown in the figure. The ratio of the moment of inertia of the smaller sphere to that of the rest part of the sphere about the Y-axis is                        [2025]


 

1

757

 

2

764

 

3

78

 

4

740

 


Ans.

(1)

Moment of inertia of a solid sphere of mass M and radius R is

          I=25MR2

Mass of smaller sphere, MS=M8

Mass of remaining part, Mr=M-M8=7M8

Using parallel-axes theorem, moment of inertia of smaller sphere about y-axis,

            IS=25MSR2+MSR2=(25+1)MSR2=75MSR2

or  IS=75×M8×R2=740MR2

Moment of inertia of the larger part of the sphere about y-axis,

         IL=25M(2R)2=85MR2

Now, moment of inertia of the rest part of the sphere is

         Ir=IL-IS=85MR2-740MR2=5740MR2

    ISIr=740MR25740MR2=757