Q 11 :    

A certain number of spherical drops of a liquid of radius r coalesce to form a single drop of radius R and volume V. If T is the surface tension of the liquid, then       [2014]
 

  • energy =4VT(1r-1R) is released

     

  • energy =3VT(1r+1R) is absorbed

     

  • energy =3VT(1r-1R) is released

     

  • energy is neither released nor absorbed

     

(3)

Let n droplets each of radius r coalesce to form a big drop of radius R.

     Volume of n droplets=Volume of big drop

           n×43πr3=43πR3n=R3r3                          ...(i)

Volume of big drop, V=43πR3                                  ...(ii)

Initial surface area of n droplets,

         Ai=n×4πr2=R3r3×4πr2  (Using (i))

         =4πR3r=(43πR3)3r=3Vr  (Using (ii))

Final surface area of big drop,

          Af=4πR2=(43πR3)3R=3VR  (Using (ii))

Decrease in surface area

         ΔA=Ai-Af=3Vr-3VR=3V(1r-1R)

      Energy released=Surface tension×Decrease in surface area

            =T×ΔA=3VT(1r-1R)