Q 11 :    

Let A=[aij] be a matrix of order 3×3, with aij=(2)i+j. If the sum of all the elements in the third row of A2 is α+β2, α, βZ, then α+β is equal to :          [2025]

  • 168

     

  • 224

     

  • 210

     

  • 280

     

(2)

We have,

A=[aij] of order 3×3 with aij=(2)i+j

A=[(2)2(2)3(2)4(2)3(2)4(2)5(2)4(2)5(2)6]=[2224224424428]=2[12222222224]

 A2=4[12222222224][12222222224]=4[7721472141421414228]

   Sum of elements of third row = 4(14+142+28)

                =4(42+142)=168+562

Comparing the equation α+β2, we get

  α=168, β=56  α+β=224.



Q 12 :    

Let A=[cosθ0sinθ010sinθ0cosθ]. If for some θ(0,π), A2=AT, then the sum of the diagonal elements of the matrix (A+I)3+(AI)36A is equal to __________.          [2025]



(6)

We have, A=[cosθ0sinθ010sinθ0cosθ]

Since, A is orthogonal.

 AAT=ATA=I and AT=A1

Given, A2=AT

 A3=I

Let B=(A+I)3+(AI)36A

        =2(A3+3A)6A=2A3=2I

So, sum of diagonal elements of B = 2(1 + 1 + 1) = 6.



Q 13 :    

Let M denote the set of all real matrices of order 3×3 and let S = {–3, –2, –1, 1, 2}. Let

S1={A=[aij]M : A=AT and aijS, i,j},

S2={A=[aij]M : A=AT and aijS, i,j},

S3={A=[aij]M : a11+a22+a33=0 and aijS, i,j}.

If n(S1S2S3)=125α, then α equals __________.          [2025]



(1613)

Let M denotes the set of all real matrices of order 3×3.

M={[a11a12a13a21a22a23a31a32a33]; aijR}

Now, S1={A=[aij]M : A=AT and aijS, i,j}

   Number of elements in S1=56

S2={A=[aij]M : A=AT and aijS, i,j}

 Number of elements in S2=0

S3={A=[aij]M : a11+a22+a33=0 and aijS, i,j}

 Number of elements in S3=12×56

[  Possible cases are (1, 2, –3)  3!, (1, 1, –2)  3 and (–1, –1, 2)  3]

  n(S1S3)=12×53

Now, n(S1S2S3)=56+12×56+012×53

=56(1+12)12×53=53[13×5312)=125α

 α=1613.



Q 14 :    

Let S={mZ : Am2+Am=3IA6}, where A=[2110]. Then n(S) is equal to __________.          [2025]



(2)

A=[2110], A2=[3221], A3=[4332],

A4=[5443] and so on A6=[7665]

 Am=[m+1mmm+1] and Am2=[m2+1m2m2(m21)]

Now, Am2+Am=3IA6

 [m2+1m2m2(m21)]+[m+1mm(m1)]

=3[1001][5667]=[8664]

 m2+1+m+1  8=m2+m6=0  m=3,2

  n(S)=2.



Q 15 :    

Let A=[aij]2×2, where aij=0 for all i,j and A2=I. Let a be the sum of all diagonal elements of A and b=|A|. Then 3a2+4b2 is equal to         [2023]

  • 3

     

  • 7

     

  • 4

     

  • 14

     

(3)

Let 
A= [mnqp]         A2=I

[m2+qnmn+npqm+qpnq+p2]=[1001]

m2+qn=1     ...(i);    n(m+p)=0      ...(ii)

    q(m+p)=0      ...(iii),   nq+p2=1        ...(iv)

m2-p2=0m=±p  [Using (i) & (iv)]

Also, m+p=0

Now, let a=m+p and b=mp-qn

So, 3a2+4b2=3×q2+4(mp-qn)2

=4(-m2-qn)2=4×1=4               [Using (i)]



Q 16 :    

Let P be a square matrix such that P2=I-P. For α,β,γ,δ, if Pα+Pβ=γI-29P and Pα-Pβ=δI-13P, then α+β+γ-δ is equal to    [2023]

  • 40

     

  • 22

     

  • 18

     

  • 24

     

(4)

We have,

pα+pβ=γI-29p  ...(i)

pα-pβ=δI-13p  ...(ii)

Now,  p2=I-p

p3=p-p2=p-I+p=2p-I

p4=2p2-p=2(I-p)-p=2I-3p

p5=2p-3p2=2p-3(I-p)=5p-3I

p6=5p2-3p=5(I-p)-3p=5I-8p

p7=5p-8p2=5p-8(I-p)=13p-8I

p8=13p2-8p=13(I-p)-8p=13I-21p

p8+p6=18I-29p  ...(iv)

p8-p6=8I-13p  ...(v)

After comparing (iv) with (i) and (v) with (ii), we get:

α=8,  β=6,  γ=18,  δ=8

α+β+γ-δ=8+6+18-8=24



Q 17 :    

Let P= [3212-1232], A=[1101] and Q=PAPT. If PTQ2007P=[abcd], then 2a+b-3c-4d is equal to           [2023]

  • 2006

     

  • 2004

     

  • 2005

     

  • 2007

     

(3)

We have, P=[3212-1232], A=[1101]

Q=PAPT

Also, PTP=[32-121232][3212-1232]=[1001]

Q2007=(PAPT)(PAPT)(2007 times)=PA2007PT   [PTP=I]

 PTQ2007P=PTPA2007PTP=A2007

Now, A2=[1101][1101]=[1201]

A3=A·A2=[1101][1201]=[1301]

Continuing in the same way, we get:

A2007=[1200701]

 PTQ2007P=[1200701]=[abcd]  (Given)

a=1, b=2007, c=0, d=1

2a+b-3c-4d=2(1)+2007-3(0)-4(1)=2005



Q 18 :    

Let A=[115101]. If B=[12-1-1]A[-1-211], then the sum of all the elements of the matrix n=150Bn is equal to          [2023]

  • 50

     

  • 100

     

  • 75

     

  • 125

     

(2)

A=[115101];  B=[12-1-1]A[-1-211]

Let P=[12-1-1],  Q=[-1-211]

B=PAQ

B2=(PAQ)(PAQ)=PAQPAQ=PA2Q

As, QP=[-1-211][12-1-1]=[1001]

A2=[115101][115101]=[125101]

A3=[125101][115101]=[135101]

Similarly, An=[1n5101]

Bn=PAnQ=[12-1-1][1n5101][-1-211]

Bn=[1+n51n51-n511-n51]

n=150Bn=[50+2525-2550-25]=[7525-2525]

Sum of the elements = 100

 



Q 19 :    

The number of symmetric matrices of order 3, with all the entries from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is           [2023]

  • 106

     

  • 109

     

  • 610

     

  • 910

     

(1)

Let A=[abcdefghi]3×3 be the matrix

A is a symmetric matrix

   A=A'

[abcdefghi]=[adgbehcfi]b=d, c=g, f=h

   A=[abcbefcfi]

Each element is chosen from the set {0, 1, 2, 3, ...., 9}

Choice for each element = 10  

Number of symmetric matrices=106



Q 20 :    

If A=12[13-31], then                      [2023]

  • A30-A25=2I

     

  • A30=A25

     

  • A30+A25-A=I

     

  • A30+A25+A=I

     

(3)

A=12[13-31]A=[cos60°sin60°-sin60°cos60°]

Let A=[cosαsinα-sinαcosα],  where α=π3

A2=[cosαsinα-sinαcosα][cosαsinα-sinαcosα]

=[cos2αsin2α-sin2αcos2α]

A30=[cos30αsin30α-sin30αcos30α];  A30=[1001]=I

A25=[cos25αsin25α-sin25αcos25α]=[1232-3212]

A25=AA25-A=0