Q 11 :    

Let the set of all positive values of λ, for which the point of local minimum of the function (1+x(λ2-x2)) satisfies x2+x+2x2+5x+6<0, be (α,β). Then α2+β2 is equal to _____________ .                  [2024]



(39)

Let f(x)=1+x(λ2-x2)

       f(x)=-x3+(λ2x+1)

f'(x)=-3x2+λ2

Put f'(x)=0

λ2-3x2=0(λ-3x)(λ+3x)=0

x=±λ3,f''(x)=-6x

So, x=-λ3 is point of minima.

Now, -λ3 should satisfy the given condition x2+x+2x2+5x+6<0

i.e.,  1(x+2)(x+3)<0                                       [ x2+x+2>0]

x(-3,-2)

-3<-λ3<-2-33<-λ<-23

23<λ<33λ(23,33)(α,β)                 ( Given)

 (23)2+(33)2=12+27=39



Q 12 :    

If the function f(x)=2x39ax2+12a2x+1, where a > 0, attains its local maximum and local minimum values at p and q, respectively, such that p2=q, then f(3) is equal to :          [2025]

  • 55

     

  • 10

     

  • 37

     

  • 23

     

(3)

We have, f(x)=2x39ax2+12a2x+1

 f'(x)=6x218ax+12a2

 f(x)=6(x23ax+2a2)=6(xa)(x2a)

 f'(x)=0  6(xa)(x2a)=0  x=a, 2a

Now, f''(x)=6(2x3a)

           f''(a)=6(2a3a)=6a<0 

   x = a is point of maxima          { a > 0}

            f''(2a)=6(4a3a)=6a>0 

   x = 2a is a point of minima

So, p = a and q = 2a.

Given, p2=q  a2=2a  a=2

Now, f(x)=2x39ax2+12a2x+1

            f(3) = 54 – 162 + 144 + 1 = 37.



Q 13 :    

Let f:RR be a function defined by f(x)=||x+2|2|x||. If m is the number of points of local minima and n is the number of points of local maxima of f, then m + n is          [2025]

  • 3

     

  • 4

     

  • 5

     

  • 2

     

(1)

We have, f(x)=||x+2|2|x||

 f(x)={(x+2),x<2(3x2),2x<23(3x+2),23x<0(x+2),0x<2(x2),x>2

Critical points are x=2,23,0,2

Number of local maxima = 1 = n

Number of local minima = 2 = m

   m + n = 2 + 1 = 3.



Q 14 :    

Let a > 0. If the function f(x)=6x345ax2+108a2x+1 attains its local maximum and minimum values at the points x1 and x2 respectively such that x1x2=54, then a+x1+x2 is equal to :          [2025]

  • 18

     

  • 24

     

  • 13

     

  • 15

     

(1)

We have, f(x)=6x345ax2+108a2x+1.

Since local max. and min. values occur when f'(x)=0

f'(x)=18x290ax+108a2=0  x=2a and 3a

i.e.x1=2a, x2=3a 

Also, we have x1x2=54  6a2=54  a=3

  a+x1+x2=3+6+9=18.



Q 15 :    

Let x = –1 and x = 2 be the critical points of the function f(x)=x3+ax2+b loge |x|+1, x0. Let m and M respectively be the absolute minimum and the absolute maximum values of f in the interval [2,12]. Then |M + m| is equal to

(Take loge 2=0.7):          [2025]

  • 19.8

     

  • 22.1

     

  • 21.1

     

  • 20.9

     

(3)

We have, f(x)=x3+ax2+b loge |x|+1, x0

f'(x)=3x2+2ax+bx

f'(-1)=32ab=0

f'(2)=12+4a+b2=0  a=92, b=12

  f(x)=x392x2+12 loge |x|+1

f(1)=192+1=92

M = – 4.5

Min. value at x = – 2

f(2)=818+12 loge 2+1

m = – 25 + 12(0.7) = – 16.6

   |M + m| = 21.1



Q 16 :    

Let the length of a latus rectum of an ellipse x2a2+y2b2=1 be 10. If its eccentricity is the minimum value of the function f(t)=t2+t+1112, tR, then a2+b2 is equal to:          [2025]

  • 126

     

  • 120

     

  • 115

     

  • 125

     

(1)

Length of latus rectum =2b2a=10          [Given]

 5a=b2          ... (i)

Now, eccentricity is minimum value of

        f(t)=t2+t+1112

 f'(t)=2t+1

For critical point f'(t)=0

 2t+1=0  t=12

Since, f''(t)=2>0, so at t=12f(t) will give the minimum value.

  f(12)=1412+1112=36+1112=23

 e=23  23=1b2a2

 49=15aa2          [Using (i)]

 49=15a  5a=149=59  a=9

 b=45=35

  a2+b2=(9)2+(35)2=81+45=126.



Q 17 :    

Let f:RR be a polynomial function of degree four having extreme values at x = 4 and x = 5. If limx0f(x)x2=5, then f(2) is equal to :          [2025]

  • 12

     

  • 14

     

  • 8

     

  • 10

     

(4)

We have, limx0f(x)x2=5

Let f(x)=ax4+bx3+cx2+dx+e

 limx0(ax4+bx3+cx2+dx+e)x2=5

 c=5 and d=e=0

  f(x)=ax4+bx3+5x2

      f'(x)=4ax3+3bx2+10x

                   =x(4ax2+3bx+10)

   f(x) has extreme values at x = 4 and x = 5, so f(4) = 0 and f(5) = 0.

Using derivative and its values, we get

a=18 and b=32

Now, f(2)=18×2432×23+5×22

                      = 2 – 12 + 20 = 10.



Q 18 :    

Consider the region R={(x,y):xy9113x2, x0}.

The area, of the largest rectangle of sides parallel to the coordinate axes and inscribed in R, is :          [2025]

  • 821123

     

  • 625111

     

  • 567121

     

  • 730119

     

(3)

The given region R is shown below:

Here, x = t and y=911t33t

Area of required rectangle,

A=xy=t(911t23t)=9tt2113t3

dAdt=92t11t2

For critical points, dAdt=0

 11t2+2t9=0

 11t2+11t9t9=0

 t=1 or t=911

d2Adt2=222t

d2Adt2>0 at t=1          i.e., minima and

d2Adt2<0 at t=911          i.e., maxima

   Maxima at t=911

   Largest area =911(9113×81121911)=911×6311=567121.



Q 19 :    

If the set of all values of a, for which the equation 5x315xa=0 has three distinct real roots, is the interval (α, β), then β2α is equal to __________.          [2025]



(30)

Given, 5x315xa=0  a=5x315x

Let P(x)=5x315x

Differentiating w.r.t. x, we get

P'(x)=15x215=15

(x1)(x+1)

  x(10,10)

  β2α=102(10)=10+20=30.