Q 31 :    

If the second, third and fourth terms in the expansion of (x+y)n are 135, 30, and 103, respectively, then 6(n3+x2+y) is equal to ______.       [2024]



(806)

Tr+1=Crnxn-ryr

    C1nxn-1y=135,                                            ...(i)

          C2nxn-2y2=30                                              ...(ii)

and   C3nxn-3y3=103                                            ...(iii)

By (i) and (ii), we have

      C1 nxC2 ny=13530=92                                            ...(iv)

By (ii) and (iii), we have

       C2 nxC3 ny=30103=9                                             ...(v)

By (iv) and (v), we have

       C1 nxC2 ny×C3 nyC2 nx=929

C1 C3nn(C2n)2=122C1 nC3n=(C2n)2

2n n!3!(n-3)!=(n!2!(n-2)!)2

2n2(n-1)(n-2)6=(n(n-1)2)2

n2(n-1)(n-2)3=n2(n-1)24n-23=n-14

4n-8=3n-3n=5

C2 x5C35 y=9                                                            [Using (v)]

xy=9

x=9y                                                                     ...(vi)

    From (i), C1 5x4 x9=135x5=135×95

x5=35

x=3 and y=13                                                 [Using (vi)] 

Hence, 6(n3+x2+y)=6(125+9+13)=806 



Q 32 :    

The coefficient of x2012 in the expansion of (1-x)2008(1+x+x2)2007 is equal to _______ .              [2024]



(0)

We have, (1-x)2008(1+x+x2)2007

=(1-x)2007(1-x)(1+x+x2)2007=(1-x)(1-x3)2007

(1-x)(C0-C12007(x3)+...2007)

General term is (1-x)((-1)r Cr 2007x3r)

=(-1)r Cr 2007x3r-(-1)rCr  2007x3r+1

Now, 3r=2012r20123

So, 3r+1=20123r=2011r20113

Hence, there is no term containing x2012.

So, coefficient of x2012=0

 



Q 33 :    

Number of integral terms in the expansion of {7(12)+11(16)}824 is equal to _______ .             [2024]



(138)

We have, {7(12)+11(16)}824

Now, (n+1)th term =tn+1=Crn 11r6 7824-r2

For integral term, 6 should divide r and 824-r2 must be integer.

2 must divide r and r is divisible by 6

Possible values of r so that integral terms are obtained i.e., 0, 6, 12, ... 822

Now, this is an A.P. so let n be number of integral terms 

   822=0+(n-1)6n=138

So, 138 integral terms will be there in the expansion.



Q 34 :    

In the expansion of (1+x)(1-x2)(1+3x+3x2+1x3)5,x0, the sum of the coefficients of x3 and x-13 is equal to _______ .           [2024]



(118)

The given expansion (1+x)(1-x2)(1+3x+3x2+1x3)5

(1+x)2(1-x)(x3+3x2+3x+1)5x15

(1+x)2(1-x)[(x+1)3]5x15(1-x)(1+x)17x15

    Coefficient of x3x18 in (1-x)(1+x)17

(1+x)17-x(1+x)17

0-x(C17 17x17)=C17 17(-1)=-1

and coefficient of x-13x2 in (1-x)(1+x)17

(1+x)17-x(1+x)17

C217-C117=17×8-17=17×7=119

The sum of the coefficient x3 and x-13=-1+119=118



Q 35 :    

The term independent of x in the expansion of ((x+1)(x2/3+1x1/3)(x1)(xx1/2))10, x>1, is:         [2025]

  • 120

     

  • 240

     

  • 210

     

  • 150

     

(3)

We have, ((x+1)(x23+1x13)(x1)(xx12))10

=((x13+1)(x+1x))10=(x131x)10

Tr+1=Cr10(x)10r3(1)r(x)r2

Since, the term is independent of x, then 10r3r2=0

  (20 – 2r) – 3r = 0  r = 4.

Hence, the required term is C410(1)4=210.



Q 36 :    

In the expansion of (23+133)n, nN, if the ratio of 15th term from the beginning to the 15th term from the end is 16, then the value of C3n is          [2025]

  • 4960

     

  • 4060

     

  • 1040

     

  • 2300

     

(4)

Given, (23+133)n, nN

Now, Tr+1=Crn·(23)nr(133)r

  T15=C14n·(23)n14(133)14

15th term from end = Tn13 from beginning

 Tn13=Cn14n·(23)14(133)n14

But T15Tn13=C14n(23)n14(133)14Cn14n(23)14(133)n14=16

 (23)n28×(33)n28=61  (63)n28=61

 n283=1  n=25

So, C3n=C325=2300.



Q 37 :    

The number of integral terms in the expansion of (512+718)1016 is          [2025]

  • 129

     

  • 127

     

  • 130

     

  • 128

     

(4)

Tr+1=Cr 101651016r27r/8, represents the (r+1)th term of (51/2+71/8)1016.

As Tr+1 represent an integral term when r is a multiple of 8

i.e., r = 0, 8, 16, 24, ....., 1016

Now, 1016 = 0 + (n – 1)8          [As this form an A.P.]

 n1=127  n=128

So, 128 terms are integral terms.



Q 38 :    

For some n10, let the coefficients of the 5th, 6th and 7th terms in the binomial expansion of (1+x)n+4 be in A.P. Then the largest coefficient in the expansion of (1+x)n+4 is:          [2025]

  • 35

     

  • 20

     

  • 10

     

  • 70

     

(1)

Coefficient of 5th, 6th and 7th terms of the expansion of (1+x)n+4 are C4n+4, C5n+4 and C6n+4 respectively. As C4n+4, C5n+4 and C6n+4 are in A.P.

 2×C5n+4=C4n+4+C6n+4

 25(n1)=1n(n1)+130 25(n1)=30+n2n30n(n1)

 12n=30+n2n  n213n+30=0

 (n3)(n10)=0  n=3          [ n10]

Here, n + 4 = 3 + 4 = 7

   Largest binomial coefficient in expansion (1+x)7 = Coefficient of middle term = C47 or C37=35.



Q 39 :    

The least value of n for which the number of integral terms in the Binomial expansion of (73+1112)n is 183, is :          [2025]

  • 2148

     

  • 2184

     

  • 2196

     

  • 2172

     

(2)

General term = Crn(71/3)nr(111/12)r

                      = Crn(7)nr3(11)r/12

For integral terms, r must be multiple of 12

   r = 12k, k = 0, 1, 2, .....

Total number of values of r = 183

Hence, max r = 12(182) = 2184

Minimum value of n = 2184.