Q 1 :    

A particle moves so that its position vector is given by r=cosωtx^+sinωty^, where ω is a constant. Which of the following is true?         [2016]

  • Velocity is perpendicular to r and acceleration is directed towards the origin.

     

  • Velocity is perpendicular to r and acceleration is directed away from the origin.

     

  • Velocity and acceleration both are perpendicular to r.

     

  • Velocity and acceleration both are parallel to r.

     

(1)

Given, r=cosωtx^+sinωty^

  v=drdt=-ωsinωtx^+ωcosωty^

a=dvdt=-ω2cosωtx^-ω2sinωty^=-ω2r

Since position vector (r) is directed away from the origin, so, acceleration (-ω2r) is directed towards the origin.

Also, 

r·v=(cosωtx^+sinωty^)·(-ωsinωtx^+ωcosωty^)

=-ωsinωtcosωt+ωsinωtcosωt=0

  rv

 



Q 2 :    

If vectors A=cosωti^+sinωtj^ and B=cosωt2i^+sinωt2j^ are functions of time, then the value of t at which they are orthogonal to each other is      [2015]

  • t=πω

     

  • t=0

     

  • t=π4ω

     

  • t=π2ω

     

(1)

Two vectors A and B are orthogonal to each other, if their scalar product is zero i.e. A·B=0

Here, A=cosωti^+sinωtj^

and B=cosωt2i^+sinωt2j^

   A·B=(cosωti^+sinωtj^)·(cosωt2i^+sinωt2j^)

        =cosωtcosωt2+sinωtsinωt2=cos(ωt-ωt2)

But A·B=0 (as A and B are orthogonal to each other)

   cos(ωt-ωt2)=0

        cos(ωt-ωt2)=cosπ2 or ωt-ωt2=π2

        ωt2=π2 or t=πω