Q 11 :    

If x2  y2 + 2hxy + 2gx + 2fy + c = 0 is the locus of a point, which moves such that it is always equidistant from the lines x + 2y + 7 = 0 and 2xy + 8 = 0, then the value of g + c + hf equals          [2024]

  • 29

     

  • 6

     

  • 8

     

  • 14

     

(4)

Let point P(x, y) be equidistant from the given lines.

   x + 2y + 75 = ± 2x  y + 85

   (x + 2y + 7)2 = (2x  y + 8)2

   x2 + 4y2 + 49 + 4xy + 28y + 14x = 4x2 + y2 + 64  4xy  16y + 32x

   3x2 3y2  8xy + 18x  44y + 15 = 0

   x2  y2  83 xy + 6x  443 y + 5 = 0          ... (i)

This is the locus of the point P(x, y).

Now, compare equation (i) with given equation of locus, we get

2h = 83  h = -43,

2g = 6  g = 3,

2f = 443  223,

and c = 5

   g + c + h  f = 3 + 5  43 + 223 = 14.



Q 12 :    

Let A (a, b), B(3, 4) and C(–6, –8) respectively denote the centroid, circumcentre and orthocentre of a triangle. Then, the distance of the point P(2a + 3, 7b + 5) from the line 2x + 3y – 4 = 0 measured parallel to the line x – 2y – 1 = 0 is          [2024]

  • 1756

     

  • 517

     

  • 1757

     

  • 1557

     

(3)

Given the A (a, b), B(3, 4) and C(–6, –8) respectively the centroid, circumcentre and orthocentre of a triangle.

We know that centroid divides circumcentre and orthocentre internally in the ratio 1 : 2

   a = 6 + 62, b = 8 + 83

   a = 0, b = 0

Therefore, the coordinates of P are (3, 5).

Also, l : 2x + 3y – 4 = 0 (Given)          ... (i)

Equation of the line passing through P(3, 5) and parallel to the line x – 2y – 1 = 0 is

y  5 = 12 (x  3)

   2y  10 = x  3

   x  2y + 7 = 0          ... (ii)

Solving equation (i) and (ii), we get

x = 137, y = 187

   Distance between (3, 5) and (137, 187) is

(3 + 137)2 + (5  187)2 = 115649 + 28949 144549 = 1757



Q 13 :    

Consider a triangle ABC having the vertices A(1, 2), B(α, β) and C(γ, δ) and angles ABC = π6 and BAC = 2π3. If the points B and C lie on the line y = x + 4, then α2 + γ2 is equal to __________          [2024]



(14)

P = |1 + 2  4|12 + 12 = 32

sin (π6) = 3/2AB    32AB = 12    AB = 62

   (α  1)2 + (α + 4  2)2 = (62)2

   α2 + 1  2α + α2 + 4 + 4α = 18

   2α2 + 2α  13 = 0  α and γ satisfy same equation

    α and γ are the roots of the equation 2x2 + 2x  13 = 0

Sum of roots = α + γ = 22 = 1 

Product of roots = αγ = 132

Now, α2 + γ2 = (α + γ)2  2αγ

= (1)2  2 (132) = 1 + 13 = 14.



Q 14 :    

Let a ray of light passing through the point (3, 10) reflects on the line 2x + y = 6 and the reflected ray passes through the point (7, 2). If the equation of the incident ray is ax + by + 1 = 0, then a2 + b2 + 3ab is equal to __________ .           [2024]



(1)

x  32 = y  101 = 2(2 × 3 + 10  6)4 + 1 = 4

    x = 5, y = 6

    A'(–5, 6) and B(7, 2)

    Equation of line A'B is

    y  6 = 2  67 + 5 (x + 5)

    y  6 =  13 (x + 5)

    3y  18 = x  5        x + 3y = 13

and 2x + y = 6 (Given line).

On solving, we get y = 4, x = 1

    Q  (1, 4)

Equation of line AQ is

y  10 = 10  43  1 (x  3)        y  10 = 3(x  3)

    y  10 = 3x  9        3x  y + 1 = 0

On comparing with given equation ax + by + 1 = 0, we get a = 3, b = –1

Hence, a2 + b2 + 3ab = 9 + 1 + 3(3)(1) = 9 + 1  9 = 1.



Q 15 :    

Let ABC be an isosceles triangle in which A is at (–1, 0), A = 2π3AB = AC and B is on the positive x-axis. If BC = 43 and the line BC intersects the line y = x + 3 at (α, β), then β4α2 is __________.          [2024]



(36)

We have, sin 30°AC = sin 120°BC

    AC = 43 × 12 × 23

    AC = 4 = AB

    AB2 = (x + 1)2      x + 1 = ±4

But B is on positive x-axis

    Coordinates of B = (3, 0)

Now, AC2 = 16

    (p + 1)2 + q2 = 16         ... (i)

Also, BC2 = 48

    (p  3)2 + q2 = 48          ... (ii)

Solving (i) and (ii), we get

p = 3, q = 23

So, coordinates of C = (3, 23)

    Equation of line BC is, y  0 = 23  03  3 (x  3)

    x +3y = 3          ... (iii)

Now, point of intersection of line (iii) and x + 3 = y is

(3(3  2), 3(3  1))

    α = 3(3  2), β = 3(3  1)

β4α2 = 34(3 + 1  23)232(3  2)2 = 9(2(2 3))2(2  3)2 = 9 × 4 = 36.



Q 16 :    

If the sum of squares of all real values of α, for which the lines 2xy + 3 = 0, 6x + 3y + 1 = 0 and αx + 2y  2 = 0 do not form a triangle is p, then the greatest integer less than or equal to p is __________.          [2024]



(32)

We have, 2xy + 3 = 0         ... (i)

6x + 3y + 1 = 0                     ... (ii)

αx + 2y  2 = 0          ... (iii)

Case I. If the lines are concurrent then they do not form a triangle

    |213631α22|= 0

    α(1  9)  2(2  18)  2(6 + 6) = 0

    10α + 32  24 = 0    10α = 8    α = 45

Case II. If the lines are parallel then they do not form a triangle.

If the lines (i) and (iii) are parallel,

   2α = 12  32      α = 4

If the lines (ii) and (iii)  are parallel,

   6α = 32  12      α = 4

    Sum of squares of all real values of α

= (45)2 + (4)2 + (4)2 = 1625 + 16 + 16 = 1625 + 32

[P] = [32 + 1625] = 32.



Q 17 :    

Let for any three distinct consecutive terms a, b, c of an A.P., the lines ax + by + c = 0 be concurrent at the point P and Q(α, β) be a point such that the system of equations x + y + z = 6, 2x + 5y + αz = β and x + 2y + 3z = 4, has infinitely many solutions. Then (PQ)2 is equal to __________.          [2024]



(113)

a, b, c are in A.P. 2b = a + c a – 2b + c = 0 and ax + by + c = 0 are concurrent.

Two lines a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0 are concurrent if

a1a2 = b1b2 = c1c2           1x = 2y = 11 = 0

    x = 1  and  y = 2

So, P(1, –2) is the point of concurrency.

Now, x + y + z = 6                    ... (i)

         2x + 5y + αz = β           ... (ii)

         x + 2y + 3z = 4               ... (iii)

has infinitely many solution.

On solving these equation, we have

          x + y = 6 – zx + 2y = 4 – 3z

On solving these two, we get –y = 2 + 2z

    y = –2(1 + z)      x = 6 – z + 2 + 2z      x = 8 + z

From (ii), we get 2(8 + z) + 5(–2(1 + z)) + αz = β

   6  8z + αz = β

   z(α  8) = β  6

For infinitely many solution, α = 8, β = 6

|PQ|2= ((8  1)2 + (6 + 2)2)2 = 113