Q.

Let a ray of light passing through the point (3, 10) reflects on the line 2x + y = 6 and the reflected ray passes through the point (7, 2). If the equation of the incident ray is ax + by + 1 = 0, then a2+b2+3ab is equal to __________ .           [2024]


Ans.

(1)

x  32 = y  101 = 2(2 × 3 + 10  6)4 + 1 = 4

    x = 5, y = 6

    A'(–5, 6) and B(7, 2)

    Equation of line A'B is

    y  6 = 2  67 + 5 (x + 5)

    y  6 =  13 (x + 5)

    3y  18 = x  5        x + 3y = 13

and 2x + y = 6 (Given line).

On solving, we get y = 4, x = 1

    Q  (1, 4)

Equation of line AQ is

y  10 = 10  43  1 (x  3)        y  10 = 3(x  3)

    y  10 = 3x  9        3x  y + 1 = 0

On comparing with given equation ax + by + 1 = 0, we get a = 3, b = –1

Hence, a2 + b2 + 3ab = 9 + 1 + 3(3)(1) = 9 + 1  9 = 1.