Q 1 :    

The vertices of a triangle are A(–1, 3), B(–2, 2) and C(3, –1). A new triangle is formed by shifting the sides of the triangle by one unit inwards. Then the equation of the side of the new triangle nearest to origin is            [2024]

  • -x + y - (2 - 2) = 0

     

  • x - y - (2 + 2) = 0

     

  • x + y + (2 - 2) = 0

     

  • x + y - (2 - 2) = 0

     

(4)

Equation of ACy - 3 = -44 (x + 1)

   x + y = 2

Equation ABy - 2 = 11 (x + 2)

   x - y + 4 = 0

Equation BCy + 1 = -35 (x - 3)

   3x + 5y = 4

Distance of AC from origin O(0, 0) = |-2|2 = 2

Distance of AB from origin O(0, 0) = |4|2 = 22

Distance of BC from origin O(0, 0) = |-4|9 + 25 = 434

When each side of ABC shifted by one unit inwards distance of new sides from origin are 2 - 1, 22 - 1, 434 + 1 respectively.

Clearly new position of AC is nearest to the origin.

Equation of AC when shifted by one unit inwareds can be chosen as x + y = c

Thus, we have |c - 2|2 = 1    c = 2 - 2

  Required equation is x + y - 2 + 2 = 0.



Q 2 :    

Let two straight lines drawn from the origin O intersect the line 3x + 4y = 12 at the points P and Q such that OPQ is an isosceles triangle and POQ = 90°. If l = OP2 + PQ2 + QO2, then the greatest integer  less than or equal to l is:           [2024]

  • 44

     

  • 42

     

  • 46

     

  • 48

     

(3)

Let P(r cos θ, r sin θ) and Q(-r sin θ, r cos θ)

   OP2 = OQ2 = r2

Now, in POQ, POQ = 90°, PQ2 = 2r2

Now, l = OP2 + PQ2 + OQ2 = 4r2

   P and Q lies on 3x + 4y = 12

   3(r cos θ) + 4(r sin θ) = 12

   3 cos θ + 4 sin θ = 12r            ... (i)

and 3(-r sin θ) + 4(r cos θ) = 12

   -3 sin θ + 4 cos θ = 12r          ... (ii)

From (i) and (ii), we have

25 = 288r2    r2 = 28825

Now, l = 4r2 = 4 × 28825 = 46.08

So, [l] =46.



Q 3 :    

Let A(–1, 1) and B(2, 3) be two points and P be a variable point above the line AB such that the area of PAB is 10. If the locus of P is ax + by = 15, then 5a + 2b is:          [2024]

  • 6

     

  • 4

     

  • - 65

     

  • - 125

     

(4)

Let coordinates of P be (h, k).

Area of PAB = 10sq. units

   10 = 12|h-12 k13 111|

   ±20 = h(-2) - k(-3) + 1(-5)

   -2h + 3k = 25

(  P is above the line AB, so we take only +ve value)

   -2 × 35 h + 3 × 35 k = 3 × 255

   -65 h + 95 k = 15

On comparing it with ax + by = 15, we get a = -65 and b = 95

.5a + 2b = - 6 + 185 = -125



Q 4 :    

The equations of two sides AB and AC of a triangle ABC are 4x + y = 14 and 3x – 2y = 5, respectively. The point (2, - 43) divides the third side BC internally in the ratio 2 : 1, the equation of the side BC is          [2024]

  • x + 3y + 2 = 0

     

  • x – 3y – 6 = 0

     

  • x + 6y + 6 = 0

     

  • x – 6y – 10 = 0

     

(1)

Let D(2, -43) be the point on BC which divides BC in ratio 2 : 1.

Let coordinates of B be (x1, 14 - 4x1) and coordinates of C be (x2, 3x2 - 52)

Now, 2x2 + x13 = 22(3x2 - 52) + 14 - 4x13 = -43

   2x2 + x1 = 6, 3x2 - 4x1 = -4 + 5 - 14

   2x2 + x1 = 6, 3x2 - 4x1 = -13

On solving these two equations, we get, x1 = 4, x2 = 1

So B(4, –2) and C(1, –1) are the required points.

Equation of BC : y+1=-13(x-1)3y+x+2=0



Q 5 :    

The Portion of the line 4x + 5y = 20 in the first quadrant is trisected by the lines L1 and L2 passing through the origin. The tangent of an angle between the lines L1 and L2 is:          [2024]

  • 3041

     

  • 2541

     

  • 25

     

  • 85

     

(1)

Lines L1 and L2 trisect the line 4x + 5y = 20.

x1 = 5 × 1 + 0 × 21 + 2 = 53

y1 = 0 × 1 + 4 × 21 + 2 = 83

(x1, y1)  (53, 83)

Similarly,

x2 = 0 × 1 + 5 × 21 + 2 = 103

y2 = 4 × 1 + 0 × 21 + 2 = 43, (x2, y2)  (103, 43)

Slope of line L1 : m1 = 83 × 35 = 85

Slope of line L2 : m2 = 43 × 310 = 25

Tangent angle between the lines L1 and L2:

tan θ =|m1 - m21 + m1m2|= |85 - 251 + 85 × 25|= 3041



Q 6 :    

Let R be the interior region between the lines 3xy + 1 = 0 and x + 2y – 5 = 0 containing the origin. The set of all values of a, for which the points (a2, a + 1) lie in R, is:          [2024]

  • (-3, -1)  (13, 1)

     

  • (-3, 0)  (23, 1)

     

  • (-3, -1)  (- 13, 1)

     

  • (-3, 0)  (13, 1)

     

(4)

It is given that, region R lies between the lines 3xy + 1 = 0 and x + 2y – 5 = 0.

The point (a2, a + 1) and (0, 0) lie in the region R.

   (a2, a + 1) and (0, 0) are on same side of both the line.

For Line 3xy + 1 = 0, O(0, 0) is on the right side of the line.

So, point (a2, a + 1) will also be on right side of the line.

   3a2 - a - 1 + 1 > 0

   a(3a - 1) > 0

   a  (-, 0)  (13, )          ... (i)

For line x + 2y – 5 = 0, O(0, 0) is on the left side of the line.

So, point (a2, a + 1) will also be on left side of the line.

   a2 + 2a + 2 - 5 < 0

   (a + 3)(a - 1) < 0

   a  (-3, 1)         ... (ii)

From the intersection of (i) and (ii), we get

a  (-3, 0)  (13, 1)



Q 7 :    

In a ABC, Suppose y = x is the equation of the bisector of the angle B and the equation of the side AC is 2xy = 2. If 2AB = BC and the points A and B are respectively (4, 6) and (α, β), then α + 2β is equal to          [2024]

  • 39

     

  • 42

     

  • 48

     

  • 45

     

(2)

We have, y = x          ... (i)

and    2xy = 2          ... (ii)

Solving (i) and (ii), we get x = 2 and y = 2

As, ABD =~ CBD

   ABBC = ADDC = 12

D (λ + 83, 2λ - 2 + 123) lies on y = x

   λ + 83 = 2λ + 103      λ = -2. So, C (-2, -6)

The image of the point A will lies on the line BC.

Let A' = (6, 4)

Now, β - 4α - 6 = 108      α - 4α - 6 = 54   (   α = β)

   4α - 16 = 5α - 30    14 = α = β

   α + 2β = 14 + 2 × 14 = 42



Q 8 :    

The distance of the point (2, 3) from the line 2x – 3y + 28 = 0, measured parallel to the line 3x - y + 1 = 0, is equal to          [2024]

  • 4 + 63

     

  • 42

     

  • 63

     

  • 3 + 42

     

(1)

Slope of a line passing through (2, 3) and parallel to line 3x - y + 1 = 0 is same as that of line 3x - y + 1 = 0

So, slope of line = 3

   tan θ = 3    sin θ = 32, cos θ = 12

So, equation of line passing through (2, 3) and having slope 3 in normal form is,

x - 21/2 = y - 33/2 = r    x =r2 + 2,  y = 32 r + 3

This line passes through 2x – 3y + 28 = 0

   2(r2 + 2) - 3(32 r + 3) + 28 = 0    (2 - 332) r = -23

   r = -23 × 22 - 33 × 2 + 332 + 33    r = 2(2 + 33) = 4 + 63



Q 9 :    

Let A be the point of intersection of the lines 3x + 2y = 14, 5xy = 6 and B be the point of intersection of the lines 4x + 3y = 8, 6x + y = 5. The distance of the point P(5, –2) from the line AB is          [2024]

  • 8

     

  • 52

     

  • 132

     

  • 6

     

(4)

Point of intersection of lines 3x + 2y = 14 and 5xy = 6 is A(2, 4)

Point of intersection of lines 4x + 3y = 8 and 6x + y = 5 is B = (12, 2)

So, equation of line AB is, y - 4 = 2 - 412 - 2 (x - 2)

   y - 4 = 43 (x - 2)      4x - 3y + 4 = 0

  Distance of point P(5, –2) from 4x – 3y + 4 is given as

d = |4 × 5 - 3 × (-2) + 416 + 9|  d = 6 units



Q 10 :    

A line passing through the point A(9, 0) makes an angle of 30° with the positive direction of x-axis. If this line is rotated about A through an angle of 15° in the clockwise direction, then its equations in the new position is          [2024]

  • x3 + 2 + y = 9

     

  • y3 - 2 + x = 9

     

  • x3 - 2 + y = 9

     

  • y3 + 2 + x = 9

     

(2)

Let l be the line passing through point A(9, 0) making angle 30° with x-axis.

Line is rotated clockwise by 15° then l' is the new position of line where it make 15° angle with x-axis.

So, equation of line passing through (9, 0) and making angle 15° with x-axis is (y – 0) = tan 15° (x – 9)

   y = tan (45° – 30°)(x – 9) = (tan 45°  tan 30°1 + tan 45° · tan 30°) (x  9)

   y = (2  3) (x  9)

   y2  3 = x  9      y3  2 + x = 9