Q 61 :    

The distance of the line x22=y63=z34 from the point (1, 4, 0) along the line x1=y22=z+33 is:          [2025]

  • 15

     

  • 17

     

  • 13

     

  • 14

     

(4)

Let the parallel line is x11=y42=z03=λ

 x=λ+1, y=2λ+4, z=3λ

and x22=y63=z34=t

 x=2t+2, y=3t+6, z=4t+3

So, their point of intersection is

(λ+1,2λ+4,3λ)=(2t+2,3t+6,4t+3)

 λ=2t+1

and 2λ+4=3t+6          [ λ=2t+1]

 t=0, λ=1

So, point of intersection is (2, 6, 3).

So, distance =(21)2+(64)2+(30)2=14.

 



Q 62 :    

Let the line passing through the points (–1, 2, 1) and parallel to the line x12=y+13=z4 intersect the line x+23=y32=z41 at the point P. Then the distance of P from the point Q(4, –5, 1) is         [2025]

  • 55

     

  • 56

     

  • 5

     

  • 10

     

(1)

Equation of line passing through (–1, 2, 1) and parallel to x12=y+13=z4 is x+12=y23=z14.

x+12=y23=z14=λ (say)

Coordinates of P are (2λ1,3λ+2,4λ+1).

As point P also lies on

x+23=y32=z41=μ (say)

   Coordinates of point P are (3μ2,2μ+3,μ+4)

 2λ1=3μ2, 3λ+2=2μ+3, 4λ+1=μ+4

On solving, we get λ=μ=1

   The point P is (1, 5, 5)

   Required distance QP=(41)2+(55)2+(15)2

                                                     =9+100+16=55



Q 63 :    

Let in a ABC, the length of the side AC be 6, the vertex B be (1, 2, 3) and the vertices A, C lie on the line x63=y72=z72. Then the area (in sq. units) of ABC is :          [2025]

  • 56

     

  • 17

     

  • 42

     

  • 21

     

(4)

Let BM be the height of the triangle ABC.

Direction ratios of AC = 3, 2, –2

Coordinates of M=(3λ+6,2λ+7,2λ+7)

Direction ratios of BM =(3λ+61,2λ+72,2λ+73)

                                                   =(3λ+5,2λ+5,2λ+4)

  BMAC

  3(3λ+5)+2(2λ+5)2(2λ+4)=0

 9λ+15+4λ+10+4λ8=0

 17λ+17=0  λ=1

   Coordinates of M = (3, 5, 9)

  BM=(31)2+(52)2+(93)2=7

Area of ABC==12×7×6=21 sq. units.



Q 64 :    

If the image of the point (4, 4, 3) in the line x12=y21=z13 is (α,β,γ), then α+β+γ is equal to          [2025]

  • 9

     

  • 7

     

  • 12

     

  • 8

     

(1)

Let x12=y21=z13=λ

 M(2λ+1,λ+2,3λ+1)

PM=(2λ3)i^+(λ2)j^+(3λ2)k^

Since, PM is perpendicular to the given line

  2(2λ3)+1(λ2)+3(3λ2)=0

 λ=1

   The coordinates of point M is (3, 3, 4).

Let Q be the image of the point P. Then, M be the mid-point of PQ.

  (4+α2,4+β2,3+γ2)(3,3,4)

 α=2,β=2,γ=5        α+β+γ=9



Q 65 :    

The square of the distance of the point (157,327,7) from the line x+13=y+35=z+57 in the direction of the vector i^+4j^+7k^ is :          [2025]

  • 66

     

  • 41

     

  • 44

     

  • 54

     

(1)

Equation of line passing through the point (157,327,7) having direction ratios 1, 4 and 7 is given by

x1571=y3274=z77=λ (say)

  x=λ+157, y=4λ+327 and z=7λ+7

It lies on the given line x+13=y+35=z+57

i.e.λ+157+13=7λ+7+57

 7λ+22=21λ+36

 λ=1

  (x,y,z)(87,47,0)

Square of the distance of the point (157,327,7) and (87,47,0)

=(15787)2+(32747)2+(70)2

= 1 + 16 + 49 = 66.



Q 66 :    

Let A, B, C be three points in xy-plane, whose position vector are given by 3i^+j^, i^+3j^ and ai^+(1a)j^ respectively with respect to the origin O. If the distance of the point C from the line bisecting the angle between the vectors OA and OB is 92, then the sum of all the possible values of a is :          [2025]

  • 1

     

  • 0

     

  • 9/2

     

  • 2

     

(1)

Equation of line OA is x3y=0

Equation of line OB is 3xy=0

Equation of angle bisector is x3y1+3+3xy3+1=0

 xy=0

|a(1a)2|=92  a=5 or 4

Required sum = 5 + (–4) = 1.



Q 67 :    

Let a=i^+2j^+k^ and b=2i^+7j^+3k^.

Let L1:r=(i^+2j^+k^)+λa,λR and L2:r=(j^+k^)+μb,μR be two lines. if the line L3 passes through the point of intersection of L1 and L2, and is parallel to a+b, then L3 passes through the point:          [2025]

  • (2, 8, 5)

     

  • (–1, –1, 1)

     

  • (5, 17, 4)

     

  • (8, 26, 12)

     

(4)

We have, L1:i^+2j^+k^+λ(i^+2j^+k^) and L2:j^+k^+μ(2i^+7j^+3k^)

Point of intersection of L1L2 is given by

(1+λ)i^+(2+2λ)j^+(1+λ)k^=2μi^+(1+7μ)j^+(1+3μ)k^

 1+λ=2μ, 2+2λ=1+7μ, 1+λ=1+3μ

 μ=1 and λ=3

   Position vector of point of intersection of L1 and L2 is 2i^+8j^+4k^.

Hence, L3 is given by

2i^+8j^+4k^+γ(a+b)=2i^+8j^+4k^+γ(3i^+9j^+4k^)

For γ=2, line L3 passes through point (8, 26, 12).



Q 68 :    

Let L1:x11=y21=z12 and L2:x+11=y22=z1 be two lines.

Let L3 be a line passing through the point (α,β,γ) and be perpendicular to both L1 and L2. If L3 intersects L1, then |5α11β8γ| equals :          [2025]

  • 20

     

  • 25

     

  • 16

     

  • 18

     

(2)

Let D.r.s. of L3 be a, b, c

Now, L3 is r to L1 and L2 = a – b + 2c = 0          ... (i)

and –a + 2b + c = 0          ... (ii)

Solving (i) and (ii), we get a5=b3=c1

Equation of line L3 is xα5=yβ3=zγ1=k

Any point on L3 is (5k+α,3k+β,k+γ)

Now, L1:x11=y21=z12=λ

Any point on L1 is (λ+1,λ+2,2λ+1)

Now L1 and L3 intersects.

  5k+α=λ+1, 3k+β=λ+2, k+γ=2λ+1

 α=5k+λ+1, β=3kλ+2, γ=k+2λ+1

  |5α11β8γ|

=|25k+5λ+533k+11λ22+8k16λ8|=|25|=25.



Q 69 :    

Let ABC be a triangle formed by the lines 7x – 6y + 3 = 0, x + 2y – 31 = 0 and 9x – 2y – 19 = 0. Let the point (h, k) be the image of the centroid of ABC in the line 3x + 6y – 53 = 0. Then h2+k2+hk is equal to :          [2025]

  • 40

     

  • 36

     

  • 47

     

  • 37

     

(4)

Centroid of ABC=(9+3+53,11+4+133)=(173,283)

Let image of centroid with respect to line mirror is (h, k).

h1733=k2836=2(3×173+6×28353)32+62

Solving, we get h = 3 and k = 4

  h2+k2+hk=37.



Q 70 :    

Let P be the foot of the perpendicular from the point (1, 2, 2) on the line L:x11=y+11=z22. Let the line r=(i^+j^2k^)+λ(i^j^+k^), λR, intersect the line L at Q. Then 2(PQ)2 is equal to :          [2025]

  • 25

     

  • 19

     

  • 27

     

  • 29

     

(3)

We have, L:x11=y+11=z22=μ

 Point is P(μ+1,μ1,2μ+2)

  D.r's of AP=(μ,μ3,2μ)

Now, μ(1)+(μ3)(1)+2(2μ)=0

 μ+μ+3+4μ=0

 6μ+3=0  μ=12

  P(12,12,1)

Now, line L intersect the other line at Q, i.e.,

(1+λ,1λ,2+λ)

  μ+1=1+λ, μ1=1λ and 2μ+2=2+λ

 μ=λ2, μ=λ2 and 2μ+2=2+λ

 2(λ2)+2=2+λ

 2λ4+2=2+λ  λ=0 and μ=2

  Q(1,1,2)

So, (PQ)2=(32)2+(32)2+(3)2=94+94+9=9+92=272

Hence, 2PQ2=27.