Q 41 :    

Let the vertices Q and R of the triangle PQR lie on the line x+35=y12=z+43, QR = 5 and the coordinates of the point P be (0, 2, 3). If the area of the triangle PQR is mn then:          [2025]

  • m521n=0

     

  • 5m221n=0

     

  • 2m521n=0

     

  • 5m212n=0

     

(3)

We have, equation of line L is

x+35=y12=z+43=λ (say)

   Coordinates of M(5λ3,2λ+1,3λ4)

Dr's of PM are <5λ3,2λ1,3λ7>

Dr's of line L are < 5, 2, 3 >

As PM  L, so, (5λ3)5+(2λ1)2+(3λ7)3=0

 λ=1

   Coordinates of M is (2, 3, –1)

Now, PM=(20)2+(32)2+(13)2=4+1+16=21

   Area of PQR=12×QR×PM=12×5×21=mn

 2m521n=0.



Q 42 :    

The line L1 is parallel to the vector a=3i^+2j^+4k^ and passes through the point (7, 6, 2) and the line L2 is parallel to the vector b=2i^+j^+3k^ and passes through the point (5,3, 4). The shortest distance between the lines L1 and L2 is :          [2025]

  • 2338

     

  • 2157

     

  • 2357

     

  • 2138

     

(1)

We have, L1:7i^+6j^+2k^+λ(3i^+2j^+4k^)

L2:5i^+3j^+4k^+μ(2i^+j^+3k^)

Here, a1=7i^+6j^+2k^, a2=5i^+3j^+4k^

             b1=3i^+2j^+4k^ and b2=2i^+j^+3k^

Now, b1×b2=|i^j^k^324213|

=i^(64)j^(98)+k^(34)

=2i^+17j^7k^

Also, a2a1=2i^3j^+2k^

Shortest distance between L1 and L2

=|(a2a1)·(b1×b2)||b1×b2|=|45114|4+289+49

=69342=69338=2338



Q 43 :    

If the image of the point P(1, 0, 3) in the line joining the points A(4, 7, 1) and B(3, 5, 3) is Q(α,β,γ), then α+β+γ is equal to :          [2025]

  • 18

     

  • 13

     

  • 473

     

  • 463

     

(4)

Equation of line AB is given by

          x41=y72=z12=λ (say)

Any point on line AB is given by (λ+4,2λ+7,2λ+1)

Now, mid-point of PQ lies on AB i.e.,

(1+α2,β2,3+γ2) is a point on AB

  1+α2=λ+4, β2=2λ+7 and 3+γ2=2λ+1

 α=2λ+7, β=144λ and γ=4λ1           ... (i)

Now, PQ is perpendicular to AB

          (α1)(1)+β(2)+(γ3)(2)=0

 α2β+2γ=5

Now, substituting the values of αβ and γ from equation (i) we get

         (2λ+7)2(144λ)+2(4λ1)=5

 2λ728+8λ+8λ2=5

 18λ=42  λ=73

  α=72×73=73, β=144×73=143

and γ=4×731=253

  α+β+γ=73+143+253=463.



Q 44 :    

Line L1 passes through the point (1, 2, 3) and is parallel to z-axis. Line L2 passes through the point (λ, 5, 6) and is parallel to y-axis. Let for λ=λ1,λ2, λ2<λ1, the shortest distance between the two lines be 3. Then the square of the distance of the point (λ1,λ2,7) from the line L1 is          [2025]

  • 40

     

  • 32

     

  • 25

     

  • 37

     

(3)

L1x10=y20=z31

               [ L1 is parallel to z-axis and passing through (1, 2, 3)]

and L2xλ0=y51=z60

               [ L2 is parallel to y-axis and passing through (λ,5,6)]

Now, shortest distance between L1 and L2 is given by

         |λ133001010|(1)2+0+0=|λ1|

 |λ1|=3  λ=4, 2

 λ1=4, λ2=2                                                      [ λ2<λ1]

Let the foot the perpendicular from point P(4, –2, 7) to the line L1 is Q(1,2,μ+3).

Direction ratios of the QP are (3, –4, 4 – μ)

  QP is perpendicular to L1

So, 3×04×0+(4μ)×1=0  μ=4

The coordinates of point Q are (1, 2, 7).

  PQ2=9+16+0  PQ2=25



Q 45 :    

Let a line passing through the point (4, 1, 0) intersect the line L1:x12=y23=z34 at the point A(α,β,γ) and the line L2:x6=y=z+4 at the point B(a, b, c). Then |101αβγabc| is equal to          [2025]

  • 12

     

  • 6

     

  • 8

     

  • 16

     

(3)

L1=x12=y23=z34=t (say)

L2=x61=y1=z41=μ (say)

A(2t + 1, 3t + 2, 4t + 3) is any point on L1.

And B(μ+6,μ,4μ) is any point on L2.

   D.R. of PA = 2t – 3, 3t + 1, 4t + 3 and D.R. of PB=μ+2,μ1,4μ, where the coordinate of P is (4, 1, 0).

         2t3μ+2=3t+1μ1=4t+34μ

               [Direction ratios of PA and PB are proportional]

         2tμ2t3μ+3=3tμ+6t+μ+2

 tμ+8t+4μ1=0         ... (i)

Also, 12t3μt+4μ=4μt+3μ4t3

 7μt16t+4μ7=0          ... (ii)

And 8t2μt12+3μ=4μt+8t+3μ+6

 6μt=18  μt=3

From equation (i), we get

8t+4μ=4  2t+μ=1          ... (iii)

From equation (ii), we get

2116t+4μ7=0

16t4μ=28  4tμ=7          ... (iv)

From equation (iii) and (iv), we get

  t=1, μ=3

  A(1,1,1) and B(9,3,1)

Now, |101αβγabc|=|101111931|

1(–1 + 3) – 0 + 1(–3 + 9) = 8.



Q 46 :    

The distance of the point (7, 10, 11) from the line x41=y40=z23 along the line x92=y133=z176 is          [2025]

  • 14

     

  • 18

     

  • 16

     

  • 12

     

(1)

Let P(7,10,11)

Any point on the line

L1:x41=y40=z23=λ

has coordinates

x=λ+4, y=4, z=3λ+2

i.e.Q(λ+4,4,3λ+2)

   Line PQ is parallel to line

L2:x92=y33=z176

 λ+472=4103=3λ+2116  λ=1

   Q(3, 4, –1) is the point on the line L1.

Hence, PQ=16+36+144=14 units.



Q 47 :    

Let the shortest distance between the lines x33=yα1=z31 and x+33=y+72=zβ4 be 330. Then the positive value of 5α+β is          [2025]

  • 46

     

  • 48

     

  • 42

     

  • 40

     

(1)

Given line are x33=yα1=z31 and x+33=y+72=zβ4

Let A(3,α,3) and B(3,7,β)

  BA=6i^+(α+7)j^+(3β)k^

Now, p×q=|i^j^k^311324|=6i^15j^+3k^

   Shortest distance between lines =|BA·(p×q)|p×q||=33

 36+15α+1059+3β=270  5α+β=46.



Q 48 :    

Let A and B be two distinct points on the line L:x63=y72=z72. Both A and B are at a distance 217 from the foot of perpendicular drawn from the point (1, 2, 3) on the line L. If O is the origin, then OA·OB is equal to          [2025]

  • 49

     

  • 62

     

  • 21

     

  • 47

     

(4)

We have, L:x63=y72=z72=λ (say)

  Let foot of perpendicular from P(1, 2, 3) on L is 

Q=(3λ+6,2λ+7,-2λ+7)

Now, 3(3λ+61)+2(2λ+72)2(-2λ+73)=0          [ PQL]

17λ=17  λ=1

Now, distance of A from Q(3, 5, 9) is the foot of perpendicular.

Let any point on line L is A(3μ+6,2μ+7,2μ+7)

Now, distance of A from Q is 217

 (3μ+63)2+(2μ+75)2+(2μ+79)2=(217)2

 9μ2+9+18μ+4μ2+4+8μ+4μ2+4+8μ=68

 17μ2+17+34μ=68  μ2+2μ+1=4

 μ2+2μ3=0  (μ+3)(μ1)=0  μ=3 or 1

  A(3,1,13) and B(9,9,5) are the points on the line L.

  OA·OB=27+9+65=47.



Q 49 :    

Let A be the point of intersection of the lines L1:x71=y50=z31 and L2:x13=y+34=z+75. Let B and C be the points on the lines L1 and L2 respectively such that AB=AC=15. Then the square of the area of the triangle ABC is           [2025]

  • 57

     

  • 54

     

  • 63

     

  • 60

     

(2)

We have, L1:x71=y50=z31 and L2:x13=y+34=z+75

Angle between L1 and L2,

cosθ=|3×1+4×0+5(1)1+0+19+16+25|=15

 sinθ=245

Now, area of ABC=12ab sinθ=12(15)2(245)

So, square of area = 15×15×244×25=54.



Q 50 :    

Let the values of p, for which the shortest distance between the lines x+13=y4=z5 and r=(pi^+2j^+k^)+λ(2i^+3j^+4k^) is 16, be a, b, (a < b). Then the length of the latus rectum of the ellipse x2a2+y2b2=1 is :          [2025]

  • 9

     

  • 23

     

  • 18

     

  • 32

     

(2)

We have lines x+13=y4=z5

r=(pi^+2j^+k^)+λ(2i^+3j^+4k^)

where, a=i^+0j^+0k^

b=pi^+2j^+k^ then ab=(1p)i^2j^k^

p=3i^+4j^+5k^ and q=2i^+3j^+4k^

Then, p×q=|i^j^k^345234|

 p×q=i^(1615)j^(1210)+k^(98)

                        =i^2j^+k^

Now, shortest distance =|(ab)·(p×q)|p×q||

  16=|(p1)+41|1+4+1 |p+2|=1

 p = 3 and 1, then a = 1 and b = 3          ( a < b)

So, length of latus rectum of ellipse x212+y232=1 is 2a2b=2×13=23.