Q 1 :    

In hydrogen atom, the de Broglie wavelength of an electron in the second Bohr orbit is [Given that Bohr radius, a0=52.9 pm]        [2019]

  • 211.6 pm

     

  • 211.6 π pm

     

  • 52.9 π pm

     

  • 105.8 pm

     

(2)

Bohr radius, a0=52.9 pm

n=2,  rn=n2a0=(2)2a0=4×52.9pm=211.6pm

The angular momentum of an electron in a given stationary state can be expressed as in equation,

mvr=n·h2π=2×h2π=hπ    mvrπ=h                          ...(i)

de Broglie equation,

           λ=hmv  ;  λmv=h                                                              ...(ii)

From equations (i) and (ii), we get λ=πr

Putting the value of r, λ=211.6π pm