Q 1 :    

Energy and radius of first Bohr orbit of He+ and Li2+ are [Given RH=2.18×10-18J, a0=52.9 pm]                      [2025]
 

  • En(Li2+)=-19.62×10-16J;  rn(Li2+)=17.6pm

    En(He+)=-8.72×10-16J;  rn(He+)=26.4pm

     

  • En(Li2+)=-8.72×10-16J;  rn(Li2+)=17.6pm

    En(He+)=-19.62×10-16J;  rn(He+)=17.6pm

     

  • En(Li2+)=-19.62×10-18J;  rn(Li2+)=17.6pm

    En(He+)=-8.72×10-18J;  rn(He+)=26.4pm

     

  • En(Li2+)=-8.72×10-18J;  rn(Li2+)=26.4pm

    En(He+)=-19.62×10-18J;  rn(He+)=17.6pm

     

     

(3)

En=-2.18×10-18Z2n2J

For first Bohr orbit of He+,

EHe+=-2.18×10-18×41=-8.72×10-18J

For first Bohr orbit of Li2+,

ELi2+=-2.18×10-18×91=-19.62×10-18J

Bohr’s radius, rn=52.9×n2Zpm

For first Bohr orbit of He+,

r(He+)=52.9×12=26.45 pm

For first Bohr orbit of Li2+,

r(Li2+)=52.9×13=17.63 pm



Q 2 :    

The energy of an electron in the ground state (n=1) for He+ ion is -x J, then that for an electron in n=2 state for Be3+ ion in J is         [2024]

  • -x

     

  • -x9

     

  • -4x

     

  • -49x

     

(1)

En=-RHZ2n2

For ground state He+ ion, Z = 2, n = 1,

        E1=-RH2212=-4RH=-x J

For an electron in n = 2 state for Be3+ ion (Z = 4),

        E2=-RH4222=-4RH=-x J



Q 3 :    

If radius of second Bohr orbit of the He+ ion is 105.8 pm, what is the radius of third Bohr orbit of Li2+ ion?               [2022]

  • 158.7 pm

     

  • 15.87 pm

     

  • 1.587 pm

     

  • 158.7 Å

     

(1)

Radius =r0×n2Z

For He+,n=2,Z=2

rHe+=r0×2×22  ;  105.8=r0×2

r0=105.82pm

For Li2+ ;n=3,Z=3

rLi2+=r0×(3)23=105.82×3=158.7 pm or 1.587 Å