Q 1 :    

The following graph represents the T-V curves of an ideal gas (where T is the temperature and V the volume) at three pressures P1,P2 and P3 compared with those of Charles's law represented as dotted lines.

Then the correct relation is                                   [2024]

[IMAGE 117]

  • P3>P2>P1

     

  • P1>P3>P2

     

  • P2>P1>P3

     

  • P1>P2>P3

     

(4)

According to Charle’s law, when the pressure of a gas is kept constant, the volume of the gas is directly proportional to the temperature of the gas.

i.e.,  VTVT=Constant

Therefore, the plot of V vs T is a straight line passing through the origin.

So, P1>P2>P3



Q 2 :    

A container of volume 200cm3 contains 0.2 mole of hydrogen gas and 0.3 mole of argon gas. The pressure of the system at temperature 200 K (R = 8.3 JK-1mol-1) will be:            [2023]

  • 6.15×105 Pa

     

  • 6.15×104 Pa

     

  • 4.15×105 Pa

     

  • 4.15×106 Pa

     

(4)

Using ideal gas equation for mixture of two gases,

P=(μ1+μ2)RTV

=(0.2+0.3)×8.3×200200×10-6=0.5×8.3×200200×10-6

P=4.15×106 Pa



Q 3 :    

The volume occupied by the molecules contained in 4.5 kg water at STP, if the intermolecular forces vanish away is          [2022]

  • 5.6×106m3

     

  • 5.6×103m3

     

  • 5.6×10-3m3

     

  • 5.6m3

     

(4)

μ=Mass of waterMolecular weight of water

           =4.5 kg18×10-3 kg=250

At STP, T=273 K and P=105 N/m2

From, PV=μRTV=μRTP

V=250×8.3×273105

V=5.66 m3



Q 4 :    

A given sample of an ideal gas occupies a volume V at a pressure P and absolute temperature T. The mass of each molecule of the gas is m. Which of the following gives the density of the gas?              [2016]
 

  • P(kT)

     

  • Pm(kT)

     

  • P(kTV)

     

  • mkT

     

(2)

As PV=nRT

or  n=PVRT=massmolar mass                       ...(i)

Density, ρ=massvolume=(molar mass)PRT=(mNA)PRT

   ρ=mPkT                                             (R=NAk)



Q 5 :    

Two vessels separately contain two ideal gases A and B at the same temperature, the pressure of A being twice that of B. Under such conditions, the density of A is found to be 1.5 times the density of B. The ratio of molecular weight of A and B is            [2015]

  • 2

     

  • 1/2 

     

  • 2/3

     

  • 3/4

     

(4)

According to an ideal gas equation, the molecular weight of an ideal gas is

            M=ρRTP                               (as P=ρRTM)

where P,T and ρ are the pressure, temperature and density of the gas respectively, and R is the universal gas constant.

     The molecular weight of A is

          MA=ρARTAPA and that of B is MB=ρBRTBPB

Hence, their corresponding ratio is

        MAMB=(ρAρB)(TATB)(PBPA)

Here, ρAρB=1.5=32, TATB=1 and PAPB=2

    MAMB=(32)(1)(12)=34