Q 1 :    

According to the law of equipartition of energy, the number of vibrational modes of a polyatomic gas of constant γ=CPCV

(where CP and CV are the specific heat capacities of the gas at constant pressure and constant volume, respectively)             [2024]
 

  • 4+3γγ-1

     

  • 3+4γγ-1

     

  • 4-3γγ-1

     

  • 3-4γγ-1

     

(3)

Polyatomic molecule has 3 translational, 3 rotational and vibrational modes.
According to law of equipartition of energy,

U=(3RT2+3RT2+fRT)

U=3RT+fRT

CV=dudt=3R+fR    f=CV-3RR=CVR-3

As,  CV=Rγ-1

     f=R(γ-1)R-31γ-1-3=4-3γγ-1

So, the correct option is 3.



Q 2 :    

Match Column-I and Column-II and choose the correct match from the given choices.                [2021]

  Column-I   Column-II
(A) Root mean square speed of gas molecules (P) 13nmv¯2
(B) Pressure exerted by ideal gas (Q) 3RTM
(C) Average kinetic energy of a molecule (R) 52RT
(D) Total internal energy of 1 mole of a diatomic gas (S) 32kBT

 

  • (A)-(R), (B)-(Q), (C)-(P), (D)-(S)

     

  • (A)-(R), (B)-(P), (C)-(S), (D)-(Q)

     

  • (A)-(Q), (B)-(R), (C)-(S), (D)-(P)

     

  • (A)-(Q), (B)-(P), (C)-(S), (D)-(R)

     

(4)

The rms velocity is, vrms=3RTM

where, R is a gas constant, M = molecular mass, T = absolute temperature. So, AQ

Pressure exerted by ideal gas is 13mnv¯2, where m is mass of each molecule, n = number of molecules, v¯2 = rms speed. So, BP.

Average kinetic energy of a molecule 32kBT

where, kB = Boltzmann’s constant, T = absolute temperature. So, CS.

Total internal energy of 1 mole of a diatomic gas, U=52RT

So, DR.



Q 3 :    

The average thermal energy for a mono-atomic gas is (kB is Boltzmann constant and T, absolute temperature)         [2020]
 

  • 12kBT

     

  • 32kBT

     

  • 52kBT

     

  • 72kBT

     

(2)

For mono-atomic gas, degree of freedom = 3

Energy associated with each degree of freedom =12kBT

So, energy is 32kBT.