Topic Question Set


Q 61 :    

The sum of all local minimum values of the function f(x)={12x,x<113(7+2|x|),1x21118(x4)(x5),x>2 is          [2025]

  • 13172

     

  • 17172

     

  • 16772

     

  • 15772

     

(4)

Graph of the function f(x)

The sum of local minimum values at A and B

=731172=15772.



Q 62 :    

If f(x)=2x2x+2, xR, then k=181f(k82) is equal to           [2025]

  • 812

     

  • 82

     

  • 41

     

  • 812

     

(1)

We have, f(x)=2x2x+2, xR

 f(x)+f(1x)=2x2x+2+21x21x+2

        =2x2x+2+22+2·2x=1

Now, S=k=181f(k82)=f(182)+f(282)+...+f(8182)

 S=f(182)+...+f(1282)+f(1182)

=f(182)+f(1182)+f(282)+f(1282)+...+ upto 40 +f(4182)

=(1+1+1+...+1)40 times+21/221/2+2=40+12=812.



Q 63 :    

Let f : [0, 3] A be defined by f(x)=2x315x2+36x+7 and g : [0, )B be defined by g(x)=x2025x2025+1. If both the functions are onto and S={xZ : xA or xB}, then n(S) is equal to:          [2025]

  • 36

     

  • 29

     

  • 30

     

  • 31

     

(3)

As f(x) is onto, hence A is range of f(x).

Now, f'(x)=6x230x+36=6(x2)(x3)

for extremum, f(2) = 16 – 60 + 72 + 7 = 35; f(3) = 54 – 135 + 108 + 7 = 34; f(0) = 7; F(1) = 30.

Hence, range  [7, 35] = A

Also, for range of g(x), g(x) = 1-1x2025+1[0,1)=B

   S = {0, 7, 8, ..., 35}

Hence, n(S) = 30



Q 64 :    

If the domain of the function log5(18xx277) is (α,β) and the domain of the function log(x1)(2x2+3x2x23x4) is (γ,δ), then α2+β2+γ2 is equal to :          [2025]

  • 195

     

  • 174

     

  • 186

     

  • 179

     

(3)

Let f1(x)=log5(18xx277)

  18xx277>0

 x218x+77<0

 (x11)(x7)<0

 x(7,11)      α=7, β=11

Also, let f2(x)=log(x1)(2x2+3x2x23x4)

  x1>0 x>1, x11  x2,

2x2+3x2x23x4>0  (2x1)(x+2)(x4)(x+1)>0

 x(4,)           γ=4

Now, α2+β2+γ2 = 49 + 121 + 16 = 186.