Topic Question Set


Q 1 :    

Let A = {1, 2, 3, 4, 5, 6, 7}. Then the relation R={(x,y)A×A:x+y=7} is                     [2023]

  • an equivalence relation

     

  • reflexive but neither symmetric nor transitive

     

  • transitive but neither symmetric nor reflexive

     

  • symmetric but neither reflexive nor transitive

     

(4)

Given, A={1,2,3,4,5,6,7}

and R={(x,y)A×A:x+y=7}

For Reflexive: Let y=x

So, x+x=7x=72, which is not possible.

So, the given relation is not reflexive.

For Symmetric: xRyx+y=7

  y+x=7   xRyyRx

Hence, the given relation is symmetric.

For Transitive: Let xRy and yRzx+y=7 and y+z=7.

But it does not imply that x+z=7

So, R is not transitive.



Q 2 :    

Let A = {2, 3, 4} and B = {8, 9, 12}. Then the number of elements in the relation

R={((a1,b1),(a2,b2))(A×B,A×B):a1 divides b2 and a2 divides b1} is                   [2023]

  • 24

     

  • 12 

     

  • 36 

     

  • 18

     

(3)

[IMAGE 2]

a1 divides b2

Each element has 2 choices. 

3×2=6

a2 divides b1 

Each element has 2 choices. 

3×2=6

Total number of relations is 6×6=36



Q 3 :    

Let A = {1, 3, 4, 6, 9} and B = {2, 4, 5, 8, 10}. Let R be a relation defined on A x B such that R={((a1,b1),(a2,b2)):a1b2 and b1a2}. Then the number of elements in the set R is             [2023]

  • 52

     

  • 180 

     

  • 26 

     

  • 160

     

(4)

We have, A={1,3,4,6,9}; B={2,4,5,8,10}

R={((a1,b1),(a2,b2)):a1b2 and b1a2}

At a1=1, there are 5 choices for b2;

a1=3, there are 4 choices for b2

a1=4, there are 4 choices for b2

a1=6, there are 2 choices for b2;

a1=9, there is 1 choice for b2;

  Total ways for (a1b2)=16

Now, at b1=2, there are 4 choices for a2

b1=4, there are 3 choices for a2;

b1=5, there are 2 choices for a2

b1=8, there is 1 choice for a2

Total ways for (b1a2)=10

Required number of ways =16×10=160

 



Q 4 :    

Let R be a relation on R, given by

R = {(a,b):3a-3b+7 is an irrational number}.

Then R is                                                         [2023]

  • reflexive and symmetric but not transitive

     

  • reflexive and transitive but not symmetric

     

  • reflexive but neither symmetric nor transitive

     

  • an equivalence relation

(3)

R={(a,b):3a-3b+7 is an irrational number}

Reflexive: For (a,a), we have 3a-3a+7=7, which is an irrational number. R is reflexive.

Symmetric: Let (a,b)R, i.e., 3a-3b+7 is an irrational number.

Now, we need to check (b,a)R or not.

Let 3a=7 and 3b=8

Then 3a-3b+7=7-8+7=27-8, which is an irrational number.

But 3b-3a+7=8-7+7=8, which is not an irrational number.

For (a,b)R(b,a)R.

R is not symmetric.

Transitive: Let (a,b) and (b,c)R.

Let 3a=8, 3b=27, 3c=7

Then 3a-3b+7=8-27+7=8-7, which is an irrational number.

Also, 3b-3c+7=27-7+7=27, which is an irrational number.

But 3a-3c+7=8-7+7=8, which is not an irrational(a,c)R.

  R is not transitive.



Q 5 :    

Let P(S) denote the power set of S = {1, 2, 3, ...., 10}. Define the relations R1 and R2 on P(S) as AR1B if (ABC)(BAC)=ϕ and AR2B if ABC=BAC,A,BP(S). Then                  [2023]

  • both R1 and R2 are not equivalence relations

     

  • only R2 is an equivalence relation

     

  • only R1 is an equivalence relation

     

  • both R1 and R2 are equivalence relations

(4)

 



Q 6 :    

The relation R={(a,b):gcd(a,b)=1,2ab,a,b,Z} is                      [2023]

 

  • reflexive but not symmetric

     

  • transitive but not reflexive

     

  • symmetric but not transitive 

     

  • neither symmetric nor transitive

     

(4)

[IMAGE 3]

Reflexive : gcd(a,a)=a1 for a1.

Symmetric: Let a=2, b=1

gcd(a,b)=1;  b2a

Thus, (2,1)R; gcd(1,2)=1. But 2=2×1

Therefore (1,2)R. Hence, R is not symmetric.

Transitive: (2,3)R

(3,8)R. But (2,8)R.

Hence R is not transitive.

R is neither symmetric nor transitive.



Q 7 :    

Let R be a relation defined on  as a R b if 2a+3b is a multiple of 5, a,b.                   [2023]

  • symmetric but not transitive

     

  • not reflexive

     

  • an equivalence relation 

     

  • transitive but not symmetric

     

(3)

If 'R' be a relation defined on N as a R b is 2a+3b is a multiple of 5, a,bN.

(i) a R a5a is a multiple of 5

    R is a reflexive relation.

(ii) a R b,2a+3b=5α (let)

Now, b R a2b+3a=2b+(5α-3b2)·3

=152α-52b=52(3α-b)=52(2a+2b-2α)=5(a+b-α)

So, R is a symmetric relation.

(iii) a R b2a+3b=5αb R c2b+3c=5β

Now, 2a+5b+3c=5(α+β)

2a+5b+3c=5(α+β) or 2a+3c=5(α+β-b)

a R c

So, R is a transitive relation.

Hence Relation 'R' is an equivalence relation.



Q 8 :    

The minimum number of elements that must be added to the relation R = {(a, b), (b, c)} on the set {a, b, c} so that it becomes symmetric and transitive is              [2023]

  • 3

     

  • 7

     

  • 4

     

  • 5

     

(2)

Given relation, R={(a,b),(b,c)} and set = {a,b,c}

For symmetric, since (a,b),(b,c)R

So, (b,a),(c,b) be in R. For transitive, since (a,b),(b,c)R

So, (a,c) should be in R. Then (c,a) should also be in R since (a,c) lies in R.

Since (a,b),(b,a)R, so (a,a)R should also lie in R.

Since (c,b),(b,c)R, so (c,c) should also lie in R.

Since (b,c),(c,b)R, so (b,b) should also lie in R.

  Elements to be added are:

(b,a),(c,b),(a,c),(c,a),(a,a),(c,c),(b,b).

Total number of elements to be added = 7.



Q 9 :    

Let R be a relation on N x N defined by (a, b) R(c, d) if and only if ad(b-c)=bc(a-d). Then R is                  [2023]

  • transitive but neither reflexive nor symmetric

     

  • symmetric but neither reflexive nor transitive

     

  • symmetric and transitive but not reflexive

     

  • reflexive and symmetric but not transitive

     

(2)

We have, (a,b)R(c,d)ad(b-c)=bc(a-d)

b-cbc=a-dad  and  1c-1b=1d-1a1a-1b=1d-1c

For reflexive: (a,b)R(a,b)1a-1b=1b-1a which is false.

Hence, it is not reflexive.

For symmetric: (a,b)R(c,d)1a-1b=1d-1c

1c-1d=1b-1a(c,d)R(a,b)

Hence, it is symmetric.

For transitive: (a,b)R(c,d)1a-1b=1d-1c

and (c,d)R(e,f)1c-1d=1f-1e

1a-1b=1e-1f(a,b)R(e,f)

Hence, it is not transitive.



Q 10 :    

Among the relations

S={(a,b):a,bR-{0},2+ab>0} and 

T={(a,b):a,bR,a2-b2Z}                                      [2023]

  • S is transitive but T is not

     

  • both S and T are symmetric

     

  • neither S nor T is transitive   

     

  • T is symmetric but S is not

     

(4)

For relation T=a2-b2I

Then, (b,a) on relation Rb2-a2I

T is symmetric, S={(a,b):a,bR-{0},2+ab>0}

2+ab>0ab>-2ba>-12

If (b,a)S, then 2+ba is not necessarily positive.

   S is not symmetric.