Topic Question Set


Q 1 :    

Let A={x:[x+3]+[x+4]3},

B={x:3x(r=1310r)x-3<3-3x},

where [t] denotes greatest integer function. Then,                [2023]

  • AB=ϕ

     

  • BC,AB

     

  • AB,AB

     

  • A=B

     

(4)

We have, [x+3]+[x+4]3

[x]+3+[x]+432[x]-4[x]-2

x(-,-1) 

Now,
3x(r=1(310r))x-3<3-3x3x(13)x-3<3-3x

3x·33-x<3-3x33<3-3x3<-3xx<-1

x(-,-1)  Both sets A and B are equal.



Q 2 :    

Let the sets A and B denote the domain and range respectively of the function f(x)=1x-x, where x denotes the smallest integer greater than or equal to x. Then among the statements

(S1):AB=(1,)-N and

(S2): AB=(1,)                                                 [2023]

  • only (S1) is true 

     

  • both (S1) and (S2) are true

     

  • only (S2) is true 

     

  • neither (S1) nor (S2) is true

     

(1)

f(x)=1x-x

If xI, x=[x] (greatest integer function) 

If xI, x=[x]+1

f(x)={1[x]-x,xI1[x]+1-x,xI

f(x)={1-{x},xI  (does not exist)-11-{x},xI

Domain of f(x)=R-I

Now, f(x)=11-{x},  xI

0<{x}<10<1-{x}<1 11-{x}>1

Range=(1,)A=R-I and B=(1,)

So, AB=(1,)-N AB(1,)

S1 is true.



Q 3 :    

If f(x)=(tan1o)x+loge(123)xloge(1234)-(tan1o),x>0, then the least value of f(f(x))+f(f(4x)) is                      [2023]

  • 4

     

  • 2

     

  • 0

     

  • 8

     

(1)

Let f(x)=Ax+BCx-A

f(f(x))= A(Ax+BCx-A)+BC(Ax+BCx-A)-A=A2x+BCxBC+A2=x  (i)

f(f(4x))=4x  [From (i)]

   f(f(x))+f(f(4x))=x+4x4   [Using A.M.G.M.]



Q 4 :    

The number of integral solutions x of log(x+72)(x-72x-3)20 is                     [2023]

  • 6

     

  •  

  • 5

     

  • 7

     

(1)

 



Q 5 :    

The domain of the function f(x)=1[x]2-3[x]-10 is (where [x] denotes the greatest integer less than or equal to x).             [2023]

  •  (-,-3](5,)

     

  • (-,-2)[6,)

     

  • (-,-3][6,)

     

  • (-,-2)(5,)

     

(2)

[x]2-3[x]-10>0

[x]2-5[x]+2[x]-10>0 ([x]-5)([x]+2)>0

[x]<-2 or [x]>5 x<-2 or x6

x(-,-2)[6,)



Q 6 :    

For x, two real valued functions f(x) and g(x) are such that, g(x)=x+1 and fog(x)=x+3-x. Then f(0) is equal to                 [2023]

  • 5

     

  • 1

     

  • 0

     

  • - 3

     

(*)

For xR, f(x) and g(x) are real-valued functions.

g(x)=x+1  and  fog(x)=x+3-x

fog(x)=x+3-xf(g(x))=x+3-x

=(x+1)2-3(x+1)+5

=[g(x)]2-3[g(x)]+5  (g(x)=x+1)

So, f(x)=x2-3x+5

f(0)=0-3×0+5=5

Note: But if we consider the domain of the composite function fog(x), then f(0) will not be defined as g(x) can’t be equal to zero.



Q 7 :    

Let f:R-{0,1} be a function such that f(x)+f(11-x)=1+x. Then f(2) is equal to                 [2023]

  •  73

     

  • 92 

     

  • 94

     

  •  74

     

(3)

f(x)+f(11-x)=1+x

x=2f(2)+f(-1)=3               (i)

x=-1f(-1)+f(12)=0         (ii)

x=12f(12)+f(2)=32              (iii)

(i)+(iii)-(ii)2f(2)=92       f(2)=94

 



Q 8 :    

The equation x2-4x+[x]+3=x[x], where [x] denotes the greatest integer function, has                 [2023]

  • no solution

     

  • exactly two solutions in (-,)

     

  • a unique solution in (-,1)

     

  • a unique solution in (-,)

     

(4)

x2-4x+[x]+3=x[x]

x2-x[x]-(x-[x])+3(x-1)=0

x(x-[x])-1(x-[x])-3(x-1)=0

(x-1)(x-[x])-3(x-1)=0

(x-1)(x-[x]-3)=0

(x-1)({x}-3)=0x=1 as {x}3



Q 9 :    

If f(x)=22x22x+2,xR, then

f(12023)+f(22023)+....+f(20222023) is equal to                               [2023]

  • 1011

     

  • 2010 

     

  • 1010 

     

  • 2011

     

(1)

Given, f(x)=22x22x+2=4x4x+2

f(1-x)=41-x41-x+2

Now, f(x)+f(1-x)=4x4x+2+4(1-x)4(1-x)+2

f(x)+f(1-x)=4x4x+2+41-x41-x+2=4x4x+2+44+2(4x)

                         =4x4x+2+22+4x=1

f(12023)+f(22023)++f(20222023)

=f(12023)+f(22023)+f(32023) ++f(1-32023)+f(1-22023)+f(1-12023)

=1+1+1++1 (1011 times)=1011



Q 10 :    

Let f(x) be a function such that f(x+y)=f(x)·f(y) for all x,yN. If f(1)=3 and k=1nf(k)=3279, then the value of n is             [2023]

  • 8

     

  •  

  • 7

     

  • 9

     

(3)

f(x+y)=f(x)·f(y) x,yN

Put x=y=1, f(2)=32;  Put x=2,y=1

f(3)=33, f(4)=34 and so on.

Now, k=1nf(k)=32793+32+33++3n=3279

3(3n-1)3-1=32793n=2187     n=7