Topic Question Set


Q 51 :    

If the domain of the function f(x)=log7(1log4(x29x+18)) is (α,β)(γ,δ), then α+β+γ+δ is equal to          [2025]

  • 18

     

  • 15

     

  • 16

     

  • 17

     

(1)

For f(x) to be defined we have,

1log4(x29x+18)>0 i.e., x29x+18<4

Also, x29x+18>0

 (x3)(x6)>0

 x(,3)(6,)          ... (i)

Now, x29x+18<4

 x29x+14<0

 (x2)(x7)<0

 x(2,7)          ... (ii)

From equation (i) & (ii), we get

x(2,3)(6,7)=(α,β)(γ,δ)          [Given]

Hence, α+β+γ+δ=2+3+6+7=18.



Q 52 :    

Let f be a function such that f(x)+3f(24x)=4x, x0. Then f(3) + f(8) is equal to          [2025]

  • 13

     

  • 12

     

  • 10

     

  • 11

     

(4)

We have, f(x)+3f(24x)=4x

Put x = 3, f(3) + 3f(8) = 12          ... (i)

Put x = 8, f(8) + 3f(3) = 32          ... (ii)

Adding (i) and (ii), we get f(3) + f(8) = 11.



Q 53 :    

Let f,g : (1,)R be defined as f(x)=2x+35x+2 and g(x)=23x1x. If the range of the function fog : [2,4]R is [α,β] then 1βα is equal to          [2025]

  • 56

     

  • 68

     

  • 29

     

  • 2

     

(1)

Given f,g : (1,)Rf(x)=2x+35x+2g(x)=23x1x

also, we have fog : [2,4]R

Now, g(2)=2612=4, g(4)=21214=103

  f(g(2))=8+320+2=12, f(g(4))=20+950+6=2956

i.e.α=12 and β=2956

Then, 1βα=1295612=1156=56.



Q 54 :    

Consider the sets A={(x,y)R×R : x2+y2=25}, B={(x,y)R×R : x2+9y2=144}C={(x,y)Z×Z : x2+y24} and D=AB. The total number of one-one functions from the set D to the set C is:          [2025]

  • 18290

     

  • 15120

     

  • 17160

     

  • 19320

     

(3)

We Have, A : x2+y2=25           ... (i)

B : x2144+y216=1          ... (ii)

C : x2+y24          ... (iii)

Solving (i) and (ii), we get

x2+9(25x2)=144  8x2=81  x=±922

From (i), 818+y2=25  y2=25 818  y=±11922

As, D=AB

={(922,11922),(922,11922),(922,11922),(922,11922)}

 n(D)=4

Also, C={(x,y)Z×Z : x2+y24}

={(0, 2), (0, –2), (2, 0), (–2, 0), (1, 1), (–1, –1), (–1, 1), (1, –1), (0, 1), (0, –1), (1, 0), (–1, 0), (0, 0)}.

n(C)=13

   Total number of one-one function from D to C = 13P4 = 17160.



Q 55 :    

If the range of the function f(x)=5xx23x+2, x1,2, is (,α][β,), then α2+β2 is equal to :          [2025]

  • 190

     

  • 194

     

  • 188

     

  • 192

     

(2)

y=5xx23x+2, x1,2

 yx23xy+2y+x5=0

 yx2+(3y+1)x+(2y5)=0

Case I : If y = 0

 x = 5

Case II : if y 0

For real solutions, D0

 (3y+1)24(y)(2y5)0

 9y2+16y8y2+20y0

 y2+14y+10

 (y+7)2480

 |y+7|43  y+743 or y+743

 y437 or y437

From Case I and Case II, we have

    y(,437][437,)

  α=437 and β=437

 α2+β2=(437)2+(437)2=2(48+49)=194.



Q 56 :    

Let A = {1, 2, 3, 4} and B = {1, 4, 9, 16}. Then the number of many-one functions f : A  B such that If(A) is equal to :          [2025]

  • 163

     

  • 139

     

  • 151

     

  • 127

     

(3)

Here, n(A) = 4, n(B) = 4

Total number of functions from A to B44 = 256

Number of one-one functions from A to BP44 = 4! = 24

Number of many-one functions from A to B = 256 – 24 = 232

Number of many-one function for which 1f(A)=34 = 81

   Required number of many-one functions = 232 – 81 = 151.



Q 57 :    

Let f(x) = logex and g(x)=x42x3+3x22x+22x22x+1. Then the domain of fog is          [2025]

  • (0,)

     

  • [0,)

     

  • [1,)

     

  • R

     

(4)

Given, g(x)=x42x3+3x22x+22x22x+1

Here, DgR          [  2x22x+1>0]

Also, f(x)=logex  Df(0,)             Dfog g(x)>0

 x42x3+3x22x+22x22x+1>0  x42x3+3x22x+2>0

The above expression is always positive for any value of x.

   Domain of fog  R.



Q 58 :    

Let f(x)=2x+2+1622x+1+2x+4+32. Then the value of 8(f(115)+f(215)+...+f(5915)) is equal to          [2025]

  • 118

     

  • 102

     

  • 92

     

  • 108

     

(1)

f(x)=2x+2+1622x+1+2x+4+32

       =22(2x+4)2[(2x)2+8×2x+16]=2(2x+4)(2x+4)2=22x+4

 f(4x)=224x+4=2x2(2x+4)

     f(x)+f(4x)=22x+4+2x2(2x+4)=12

   f(115)+f(5915)=f(215)+f(5815)

     =f(315)+f(5715)=...=f(2915)+f(3115)=12

        f(3015)=f(2)=24+4=14

       8[f(115)+f(215)+...+f(5915)]

      =8[12+12+... upto (29 terms)+14]=8(292+14)=118



Q 59 :    

The function f : (,)(,1), defined by f(x)=2x2x2x+2x is :          [2025]

  • Onto but not one-one

     

  • Both one-one and onto

     

  • One-one but not onto

     

  • Neither one-one nor onto

     

(3)

Given function is f(x)=2x2x2x+2x

f(x)=2x12x2x+12x=22x122x+1=1222x+1

 f'(x)=2(22x+1)2×2×22x×loge(2)>0

 f(x) is always increasing.

Hence it is one-one.

Since f()=1 and f()=1  f(x)(1,1)(,1)

Thus, the function f(x) is one-one but not onto.

 



Q 60 :    

Let f : RR be a function defined by f(x)=(2+3a)x2+(a+2a1)x+b, a1. If f(x+y)=f(x)+f(y)+127xy, then the value of 28i=15|f(i)| is         [2025]

  • 675

     

  • 545

     

  • 735

     

  • 715

     

(1)

Given, f(x)=(2+3a)x2+(a+2a1)x+b, a1          ... (i)

Also, f(x+y)=f(x)+f(y)+127xy          ... (ii)

Put x = y = 0 in (ii), we get

f(0) = f(0) + f(0) + 1 – 0  f(0) = –1          ... (iii)

Using (i), f(0) = b = –1

Put y = – x in (ii), we get

f(xx)=f(x)+f(x)+1+27x2

 1=(2+3a)x2+(a+2a1)x1+(2+3a)x2(a+2a1)x1+1+27x2

 (2(2+3a)+27)x2=0  a=57

  f(x)=17x234x1=128(4x2+21x+28)

Now, 28i=15|f(i)|=28[|f(1)|+|f(2)|+...+|f(5)|]

        =28×128[4(12+22+...+52)+21(1+2+...+5)+28(5)]

         = 675