Q 21 :    

Let α,β be the roots of the quadratic equation x2+6x+3=0. Then α23+β23+α14+β14α15+β15+α10+β10 is equal to         [2023]

  • 729

     

  • 9

     

  • 81

     

  • 72

     

(3)

Given, x2+6x+3=0  ...(i) 

On solving eqn. (i), we get its roots

α,β=-6±6-122=-6±6i2   

α,β=3e±3πi/4

So, required expression becomes:

=(3)23(2cos69π4)+(3)14(2cos42π4)(3)15(2cos45π4)+(3)10(2cos30π4) 

=(3)23×2(-1)+0(3)15×2(-1)+0
 
=(3)8=81



Q 22 :    

Let α,β be the roots of the equation x2-2x+2=0. Then α14+β14 is equal to        [2023]

  • -642

     

  • -128

     

  • -1282

     

  • -64

     

(2)

Given, x2-2x+2=0 

x=2±(-2)2-4·1·22·1 

x=2±-62; x=1±3i2α=-2ω,  β=-2ω2 

α14+β14=(-2ω)14+(-2ω2)14 
 
=27·ω14+27ω28=27(ω+ω2)  

=-27             (ω2+ω+1=0) 

=-128



Q 23 :    

Let S={x:xR, (3+2)x2-4+(3-2)x2-4=10}. Then n(S) is equal to          [2023]

  • 2

     

  • 4

     

  • 0

     

  • 6

     

(2)

S={x:xR and (3+2)x2-4+(3-2)x2-4=10} 

Let (3+2)x2-4=t  and  (3-2)x2-4=1t

 t+1t=10t2-10t+1=0t=10±962

t=5±26=(3±2)2
 
 (3+2)x2-4=(3+2)2

 and  (3+2)x2-4=(3-2)2=(3+2)-2

 x2-4=2  and  x2-4=-2 x2=6  and  x2=2 

 x=±6 and x=±2 n(S)=4



Q 24 :    

The number of real solutions of the equation 3(x2+1x2)-2(x+1x)+5=0, is            [2023]

  • 4

     

  • 3

     

  • 2

     

  • 0

     

(4)

Given,   3(x2+1x2)-2(x+1x)+5=0 

  3[(x+1x)2-2]-2(x+1x)+5=0
 
  3[y2-2]-2y+5=0              (Let   y=x+1x) 

  3y2-6-2y+5=03y2-2y-1=0

  y=1, -13 But   y(-,-2][2,)

Hence,  no real solution.



Q 25 :    

The number of real roots of the equation  x2-4x+3+x2-9=4x2-14x+6, is        [2023]

  • 2

     

  • 3

     

  • 1

     

  • 0

     

(3)

x2-4x+3+x2-9=4x2-14x+6 

 (x-3)(x-1)+(x-3)(x+3)=2(x-3)(2x-1)

 (x-3)[x-1+x+3-22x-1]=0
 
  x-3=0x=3 

and  x-1+x+3=22x-1

 (x-1)+(x+3)+2(x-1)(x+3)=2(2x-1) 

 2x+2+2(x-1)(x+3)=4x-2

 x+1+(x-1)(x+3)=2x-1 

 (x-1)(x+3)=x-2(x-1)(x+3)=x2-4x+4

x2+2x-3=x2-4x+46x=7x=76 

Since,  x2-4x+30(x-3)(x-1)0 

 x(-,1][3,)                   ...(i)

[IMAGE 12]---------

and  x2-90(x-3)(x+3)0

 x(-,-3][3,)           ...(ii)

[IMAGE 13]---------

and  4x2-14x+60(x-3)(2x-1)0

 x(-,12][3,)              ...(iii)

[IMAGE 14]---------

From (i), (ii), and (iii), x(-,-3][3,) 

Since  x=76 does not belong to x(-,-3][3,).

Therefore,  x=3 is the only solution.



Q 26 :    

The equation e4x+8e3x+13e2x-8ex+1=0,  xR has             [2023]

  • four solutions two of which are negative

     

  • two solutions and both are negative

     

  • no solution

     

  • two solutions and only one of them is negative

     

(2)

Given,  e4x+8e3x+13e2x-8ex+1=0 

Let  ex=t 

Now,  t4+8t3+13t2-8t+1=0  ...(i) 

Dividing equation (i) by t2, we get

 t2+8t+13-8t+1t2=0t2+1t2+8(t-1t)+13=0

 (t-1t)2+2+8(t-1t)+13=0

Let  t-1t=z

 z2+8z+15=0(z+3)(z+5)=0

 z=-3 or z=-5 So,  t-1t=-3 or t-1t=-5

 t2+3t-1=0  or  t2+5t-1=0;  t=-3±132  or  t=-5±292

As  t=ex, it must be positive.  t=13-32  or  t=29-52

 x=ln(13-32)  or  x=ln(29-52)

Hence,  two solutions are possible and both are negative.



Q 27 :    

If a and b are the roots of the equation x2-7x-1=0, then the value of a21+b21+a17+b17a19+b19 is equal to ____ .       [2023]



(51)

Given: a and b are the roots of x2-7x-1=0

By Newton's theorem,

Sn+2-7Sn+1-Sn=0

S21-7S20-S19=0  ...(i)

S20-7S19-S18=0  ...(ii)

S19-7S18-S17=0  ...(iii)

S21+S17S19=S21+(S19-7S18)S19  [From (iii)]

=S21+S19-7(S20-7S19)S19  [From (ii)]

=50S19+(S21-7S20)S19=50S19+S19S19  [From (i)]

=51·S19S19=51

  a21+b21+a17+b17a19+b19=51



Q 28 :    

The number of points, where the curve f(x)=e8x-e6x-3e4x-e2x+1, x cuts the x-axis, is equal to ______ .          [2023]



(2)

Given: f(x)=e8x-e6x-3e4x-e2x+1

=(e4x+1e4x)-(e2x+1e2x)=3

=(e2x+1e2x)2-(e2x+1e2x)=5

Let e2x+1e2x=t

t2-t-5=0t=1±1+202=1±212

t=1+212  and  t=1-212 (rejected)

e2x+1e2x=1+212

Let e2x=t, then t+1t=1+212

t2+1=(1+212)t

It is a quadratic equation.

  2 values of e2x are possible.

Hence, 2 real solutions exist.