Q 11 :    

The sum of all the roots of the equation |x2-8x+15|-2x+7=0 is                [2023]

  • 11+3

     

  • 11-3

     

  • 9+3

     

  • 9-3

     

(3)

Given equation is |x2-8x+15|-2x+7=0

x2-8x+150

(x-3)(x-5)0x3 or x5

When x3 or x5

x2-8x+15-2x+7=0x2-10x+22=0

   x=5+3          [5-3 is rejected]

When 3<x<5

-(x2-8x+15)-2x+7=0x2-8x+15+2x-7=0

x2-6x+8=0(x-4)(x-2)=0

x=4  [2 does not lie between 3 and 5, so rejected]

Sum of roots=5+3+4=9+3



Q 12 :    

If the orthocentre of the triangle, whose vertices are (1, 2), (2, 3) and (3, 1) is (α,β), then the quadratic equation whose roots are α+4β and 4α+β is     [2023]

  • x2-19x+90=0

     

  • x2-20x+99=0

     

  • x2-18x+80=0

     

  • x2-22x+120=0

     

(2)

Let A(2, 3), B(1, 2), and C(3, 1) be the vertices of a triangle.

Now, BC=(3-1)2+(1-2)2  and  AC=(3-2)2+(1-3)2

ABC is an isosceles triangle.

The median and altitude passing through (α,β) are the same.

Now, slope of AB=1

slope of CD=-1

Equation of line passing through (a,b) and having slope -1 is given by  a+b=c, where c is some constant.

Now, line a+b=c will pass through the midpoint of AB as ABC is isosceles.

32+52=c=4α+β=4  ...(i)

Now, we need to find the equation where roots are α+4β and 4α+β.

[IMAGE 11]---------

Sum of roots =(α+4β)+(4α+β)=5α+5β=5(α+β)

=5×4  [Using (i)]

=20

From the options, we can see that the equation x2-20x+99=0 has sum of roots as 20.



Q 13 :    

Let p,qR and (1-3i)200=2199(p+iq),  i=-1. The p+q+q2 and p-q+q2 are roots of the equation          [2023]

  • x2-4x+1=0

     

  • x2+4x+1=0

     

  • x2-4x-1=0

     

  • x2+4x-1=0

     

(1)

Given: (1-3i)200=2199(p+iq)

(2e-iπ/3)200=2199(p+iq)

2200(cosπ3-isinπ3)200=2199(p+iq)

      2(cos200π3-isin200π3)=p+iq

 p=-1, q=-3

p+q+q2=-1-3+3=2-3

and  p-q+q2=-1+3+3=2+3

Sum of roots=(2+3)+(2-3)=4

Product of roots=(2+3)(2-3)=4-3=1

Required quadratic equation is x2-4x+1=0



Q 14 :    

Let λ0 be a real number. Let α,β be the roots of the equation 14x2-31x+3λ=0 and α,γ be the roots of the equation 35x2-53x+4λ=0. Then 3αβ and 4αγ are the roots of the equation                 [2023]

  • 7x2+245x-250=0

     

  • 49x2+245x+250=0

     

  • 49x2-245x+250=0

     

  • 7x2-245x+250=0

     

(3)

Root α will satisfy the equations,

        14α2-31α+3λ=0                                ...(i)

and   35α2-53α+4λ=0                               ...(ii)

Now, equation (i)×5-(ii)×249α-7λ=0α=λ7

Put α=λ7 in equation (i):  14(λ7)2-31(λ7)+3λ=0

λ=0,5

Since λ0, so λ=5

  α=577α-5=0

So, other root β=32γ=45

Then, 3αβ=3×5732=3021=107,   and  4αγ=4×5745=257

So, equation can be written as:

x2-(107+257)x+107×257=0

x2-5x+25049=049x2-245x+250=0



Q 15 :    

Let aR and let α,β be the roots of the equation x2+6014x+a=0.

If α4+β4=-30, then the product of all possible values of a is __________ .          [2023]



(45)

x2+6014x+a=0  ... (i)

As we have, α4+β4=(α2+β2)2-2α2β2

=((α+β)2-2αβ)2-2α2β2  ... (ii)

Now, α+β=-601/4  and  αβ=a  [From (i)]

(α+β)2=(60)12=60  and  α2·β2=a2  ... (iii)

Also, α4+β4=-30  ... (iv)

So, substituting values from (iii) and (iv) in (ii), we get:

a2-260a+45=0

a2-415a+45=0 (a-315)(a-15)=0

Product of values of a = 315×15=3×15=45



Q 16 :    

Let α1,α2,,α7 be the roots of the equation x7+3x5-13x3-15x=0 and |α1||α2||α7|. Then α1α2-α3α4+α5α6 is equal to ______.     [2023]



(9)

Given equation is, x7+3x5-13x3-15x=0

x(x6+3x4-13x2-15)=0

Here, x=0 is one of the roots. Replacing x2=t

So, t3+3t2-13t-15=0(t-3)(t2+6t+5)=0

So, t=3, t=-1, t=-5

Now, x2=3, x2=-1, x2=-5

x=±3,  x=±i,  x=±5i

From the given condition, |α1||α2||α7|

We can say that |α7|=0 and |α1|=5=|α2|

and |α4|=3=|α3|, and |α5|=1=|α6|

So, we have,

α5=i,  α6=-i,  α3=3,  α4=-3,  α2=5i,  α1=-5i

So, α1α2-α3α4+α5α6=1-(-3)+5=9



Q 17 :    

If the value of real number a>0 for which x2-5ax+1=0 and x2-ax-5=0 have a common real root is 32β then β is equal to _______ .     [2023]



(13)

       x2-5ax+1=0                         ...(i)

Here, a1=1, b1=-5a, c1=1

      x2-ax-5=0                              ...(ii)

     a2=1, b2=-a, c2=-5

∵ Equation (i) and (ii) have one common real root, so

      [1×1-(-5)(1)]2=[(-5a)(-5)-(-a)(1)](-a+5a)

36=(25a+a)(4a)36=26a×4a

    a2=3626×4a=±326

Since, the value of the root is given as 32β.

So,  β=13