Q 11 :    

If α is a root of the equation x2+x+1=0 and k=1n(αk+1αk)2=20, then n is equal to __________.          [2025]



11

We have, α is root of equation x2+x+1=0.

Let α=ω.

Then, k=1n(ωk+1ωk)2=k=1n(ω2k+1ω2k+2)

                                        =k=1n(ω2k+ωk+2)          (  ω2k=1)

But k=1n(ω2k+ωk+2)=20

 (ω2+ω4+...+ω2n)+(ω+ω2+...+ωn)=20.

If n = 3mm  I

Then, 0 + 0 + 2n = 20

 n=10 (not satisfy as m is integer).

If n = 3m + 1, then ω2+ω+n.

 n=212          (not possible)

If n = 3m + 2, then (ω2+ω4)+(ω+ω2)+2n=20.

 2(ω2+ω+n)=20.

 n=10+1=11.

   For n = 11 satisfies n = 3m + 2.