Q 11 :    

Let the function f(x)=x3+3x+3, x0 be strictly increasing in (,α1)(α2,) and strictly decreasing in (α3,α4)(α4,α5). Then i=15αi2 is equal to          [2025]

  • 40

     

  • 28

     

  • 36

     

  • 48

     

(3)

We have,

f(x)=x3+3x+3

 f'(x)=133x2

For critical points,

f'(x)=0  133x2=0

 x2=9  x=±3

Now, f'(x) >0 x(,3)(3,)

and f'(x)<0 x(3,0)(0,3)

   f(x) is increasing in (,3)(3,) and decreasing in (3,0)(0,3)

  α1=3, α2=3, α3=3, α4=0, α5=3

  i=15αi2=9+9+9+0+9=36.



Q 12 :    

Let (2, 3) be the largest open interval in which the function f(x)=2 loge (x2)x2+ax+1 is strictly increasing and (b, c) be the largest open interval, in which the function g(x)=(x1)3(x+2a)2 is strictly decreasing. Then 100 (a + bc) is equal to:          [2025]

  • 360

     

  • 160

     

  • 280

     

  • 420

     

(1)

Given : f(x)=2 loge (x2)x2+ax+1 is strictly increasing on (2, 3)

g(x)=(x1)3(x+2a)2 is strictly decreasing on (b, c).

Using f(x), 

         f'(x)=2x22x+a

 f''(x)=2(x2)22<0

SInce f(x) is strictly increasing, so  f'(x)>0.

But we have given that (2, 3) is the largest open interval where f(x) is strictly increasing.

  f'(3)=0  26+a=0  a=4

Taking, g(x)=(x1)3(x+2a)2

                         =(x1)3(x2)2           [ a = 4]

 g'(x)=(x1)2(x2)(2x2+3x6)

                  =(x1)2(x2)(5x8)

Here, g'(x)<0          [ g(x) is strictly decreasing]

 (x1)2(x2)(5x8)<0

 x(85,2)

 b=85 and c=2

Finally, we get 100 (a + bc) = 100(4+852)=360.