Q 1 :    

A balloon is made of a material of surface tension S and its inflation outlet (from where gas is filled in it) has small area A. It is filled with a gas of density ρ and takes a spherical shape of radius R. When the gas is allowed to flow freely out of it, its radius r changes from R to 0 (zero) in time T. If the speed ν(r) of gas coming out of the balloon depends on r as ra and TSαAβργRδ then                   [2025]

  • a=-12, α=-12, β=-1, γ=12, δ=72

     

  • a=12, α=12, β=-12, γ=12, δ=72

     

  • a=12, α=12, β=-1, γ=+1, δ=32

     

  • a=-12, α=-12, β=-1, γ=-12, δ=52

     

(1)

TSαAβργRδ

[T]=[MT-2]α[L2]β[ML-3]γ[L]δ

α+γ=0, 2β-3γ+δ=0, -2α=1

    α=-12,  γ=12

Now, 2β-32+δ=0

         2β+δ=32

By checking with options 

       β=-1,  δ=72Option (a) holds

So, vΔPSrr-12

So, a=-12

 



Q 2 :    

A force defined by F=αt2+βt acts on a particle at a given time t. The factor which is dimensionless, if α and β are constants, is             [2024]

  • βtα

     

  • αtβ

     

  • αβt

     

  • αβt

     

(2)

F=αt2+βt

Dimension of α=[MLT-2][T2]=[MLT-4]

Dimension of β=[MLT-2][T]=[MLT-3]

Option a): βtα=[MLT-3][T][MLT-4]=[M0L0T2]

Option b): αtβ=[MLT-4][T][MLT-3]=[M0L0T0]

Option c): αβt=[MLT-4][MLT-3][T]=[M2L2T-6]

Option d): αβt=[MLT-4][MLT-3][T]=[M2L2T-8]

Hence, option (b) is correct.



Q 3 :    

If force [F], acceleration [A] and time [T] are chosen as the fundamental physical quantities, find the dimensions of energy.                   [2021]

  • [F][A-1][T]

     

  • [F][A][T]

     

  • [F][A][T2]

     

  • [F][A][T-1]

     

(3)

Let for energy, [E]=FαAβTγ

or [M1L2T-2]=[MLT-2]α[LT-2]β[T]γ

M1L2T-2=MαLα+βT-2α-2β+γ

Comparing from both sides, α=1

α+β=2β=1

-2α-2β+γ=-2γ=2  Energy=[F][A][T2]



Q 4 :    

A physical quantity of the dimensions of length that can be formed out of c,G and e24πε0 is [c is velocity of light, G is the universal constant of gravitation and e is charge]   [2017]

  • c2[Ge24πε0]1/2

     

  • 1c2[e2G4πε0]1/2

     

  • 1cGe24πε0

     

  • 1c2[Ge24πε0]1/2

     

(4)

Dimensions of e24πε0=[F×d2]=[ML3T-2]

Dimensions of G=[M-1L3T-2], Dimensions of c=[LT-1]

l(e24πε0)pGqcr  [L1]=[ML3T-2]p[M-1L3T-2]q[LT-1]r

On comparing both sides and solving, we get: p=12, q=12, and r=-2  l1c2[Ge24πε0]1/2

 



Q 5 :    

Planck’s constant (h), speed of light in vacuum (c) and Newton’s gravitational constant (G) are three fundamental constants. Which of the following combinations of these has the dimension of length?             [2016]

  • hGc3/2

     

  • hGc5/2

     

  • hcG

     

  • Gch3/2    

     

(1)

According to question, lhpcqGr

l=k hpcqGr                                                     ...(i)

Writing dimensions of physical quantities on both sides,

[M0LT0]=[ML2T-1]p[LT-1]q[M-1L3T-2]r

Applying the principle of homogeneity of dimensions, we get 

p-r=0     ...(ii),            2p+q+3r=1         ...(iii),            -p-q-2r=0        ...(iv)

Solving eqns. (ii), (iii) and (iv), we get p=r=12, q=-32

From eqn. (i), we get l=KhGc3/2



Q 6 :    

If dimensions of critical velocity vc of a liquid flowing through a tube are expressed as [ηxρyrz] where η,ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x,y and z are given by:                       [2015]

  • -1,-1,-1

     

  • 1,1,1

     

  • 1,-1,-1

     

  • -1,-1,1

     

(3)

[vc]=[ηxρyrz]                                    (given)                               ...(i)

Writing the dimensions of various quantities in eqn. (i), we get [M0LT-1]=[ML-1T-1]x[ML-3T0]y[M0LT0]z

                                                                                                                     =[Mx+yL-x-3y+zT-x]

Applying the principle of homogeneity of dimensions, we get x+y=0; -x-3y+z=1; -x=-1

On solving, we get x=1, y=-1, z=-1



Q 7 :    

If force (F), velocity (V) and time (T) are taken as fundamental units, then the dimensions of mass are             [2014]

  • [FVT-1]

     

  • [FVT-2]

     

  • [FV-1T-1]

     

  • [FV-1T]

     

(4)

Let mass mFaVbTc or m=kFaVbTc                   ...(i)

where k is a dimensionless constant and a,b and c are the exponents.

Writing dimensions on both sides, we get

[ML0T0]=[MLT-2]a[LT-1]b[T]c

[ML0T0]=[MaLa+bT-2a-b+c]

Applying the principle of homogeneity of dimensions, we get

a=1    ...(ii),     a+b=0    ...(iii),     -2a-b+c=0           ...(iv)

Solving eqns. (ii), (iii) and (iv), we get a=1,b=-1,c=1

From eqn. (i), [m]=[FV-1T]