Q 1 :    

A student measured the diameter of a small steel ball using a screw gauge of least count 0.001 cm. The main scale reading is 5 mm and zero of circular scale division coincides with 25 divisions above the reference level.

If screw gauge has a zero error of -0.004 cm, the correct diameter of the ball is    [2018]

  • 0.529 cm

     

  • 0.521 cm

     

  • 0.053 cm

     

  • 0.525 cm

     

(1) 

Measured diameter of the ball = Reading of screw gauge

      = MSR + VSR x LC + zero error

      = 0.5 cm + 25 x 0.001 cm + 0.004 cm = 0.529 cm

 



Q 2 :    

In an experiment, the percentage of error occurred in the measurement of physical quantities A, B, C and D are 1%, 2%, 3% and 4%, respectively. The maximum percentage of error in the measurement X, where X=A2B1/2C1/3D3 , will be                             [2019]

 

  • 10%

     

  • (313)%

     

  • 16%

     

  • -10%

     

(3)

 X=A2B1/2C1/3D3

Maximum percentage error in X

(dXX)×100=(2dAA+12dBB+13dCC+3dDD)×100

=2×1+12×2+13×3+3×4=16%



Q 3 :    

A screw gauge has least count of 0.01 mm and there are 50 divisions in its circular scale. The pitch of the screw gauge is  [2020]

  • 1.0 mm

     

  • 0.01 mm

     

  • 0.25 mm

     

  • 0.5 mm

     

(4) 

L.C.=PitchNumber of divisions on circular scale 

0.01=Pitch50

Pitch = 0.5 mm



Q 4 :    

A screw gauge gives the following readings when used to measure the diameter of a wire

Main scale reading : 0 mm

Circular scale reading : 52 divisions

Given that 1 mm on main scale corresponds to 100 divisions on the circular scale. The diameter of the wire from the above data is    (2021)

  • 0.52 cm

     

  • 0.026 cm

     

  • 0.26 cm

     

  • 0.052 cm

     

(4) 

Given the pitch of the screw gauge, P = 1 mm

Number of circular division, n = 100

Thus least count LC=pn=1100=0.01mm=0.001cm

So, diameter of the wire =MSR+(CSR×LC)

=0 + (52 x 0.001 cm) = 0.052 cm



Q 5 :    

A metal wire has mass (0.4±0.002) g, radius (0.3±0.001) mm and length (5±0.02) cm. The maximum possible percentage error in the measurement of density will nearly be      [2023]

  • 1.6%

     

  • 1.4%

     

  • 1.2%

     

  • 1.3%

     

(1)

Volume of the wire, V=πr2L

Density of the wire ρ=mV=mπr2L

For percentage error,

Δρρ×100=Δmm×100+2×Δrr×100+ΔLL×100

  Δρρ×100=0.0020.4×100+2×0.001×1000.3+0.025×100

=0.5+0.67+0.4=1.571.6%



Q 6 :    

The errors in the measurement which arise due to unpredictable fluctuations in temperature and voltage supply are      [2023]

  • Least count errors

     

  • Random errors

     

  • Instrumental errors

     

  • Personal errors

     

(2)

Random errors are the errors which occur due to random and unpredictable fluctuations in temperature and voltage supply.



Q 7 :    

The main scale of a vernier callipers has n divisions/cm. n divisions of the vernier scale coincide with (n-1) divisions of main scale. The least count of the vernier callipers is  [2019]

  • 1(n+1)(n-1)cm

     

  • 1ncm

     

  • 1n2cm

     

  • 1n(n+1)cm

     

(3)

If n divisions of the vernier scale coincide with (n−1) divisions of the main scale:

Therefore, nVSD=(n-1)MSD1VSD=(n-1)nMSD

Least count= 1MSD-1VSD=1MSD-(n-1)nMSD =1MSD-1MSD+1nMSD=1nMSD
1n×1n=1n2cm     1MSD=1ncm



Q 8 :    

A physical quantity P is related to four observations a, b, c and d as follows: P=a3b2cd

The percentage errors of measurement in a, b, c and d are 1%, 3%, 2% and 4% respectively. The percentage error in the quantity P is:          [2025]

  • 13%

     

  • 15%

     

  • 10%

     

  • 2%

     

(1)

Given, P=a3b2cd

Percentage error in quantity P,

ΔPP×100=(3Δaa+2Δbb+Δcc+12Δdd)×100

                     =3(1)+2(3)+2+12×4=3+6+2+2=13%