Q 1 :    

Let a variable line of slope m > 0 passing through the point (4, –9) intersect the coordinate axes at the points A and B. The minimum value of the sum of the distances of A and B from the origin is          [2024]

  • 10

     

  • 25

     

  • 30

     

  • 15

     

(2)

Equation of line passing through (4, –9) and having slope m is given by

(y + 9) = m(x – 4)

Since it intersect the coordinate axes at points A and B so at A, y = 0

   A = (9 + 4mm, 0)

Similarly at B, x = 0

   B = (0,  4m  9)

Now, let O(0, 0) be origin, then

OA + OB = (9 + 4mm)2 + (9 + 4m)2

= 9 + 4mm + 9 + 4m          [  m > 0]

= 13 + 9m + 4m

Now, 9m + 4m2  9m·4m          [  A.M.  G.M.]

   9m + 4m  12

   OA + OB  13 + 12  i.e.  25



Q 2 :    

If the locus of the point, whose distance from the point (2, 1) and (1, 3) are in the ratio 5 : 4, is ax2 + by2 + cxy + dx + ey + 170 = 0, then the value of a2 + 2b + 3c + 4d + e is equal to :          [2024]

  • 5

     

  • – 27

     

  • 37

     

  • 437

     

(3)

Let given point be (h, k) whose distance from (2, 1) and (1, 3) is in ratio 5 : 4.

   (h - 2)2 + (k - 1)2(h - 1)2 + (k - 3)2 = 2516

   h2 + k2 - 4h - 2k + 5h2 + k2 - 2h - 6k + 10 = 2516

On replacing h by x and k by y, we get

16x2 + 16y2 - 64x - 32y + 80 = 25x2 + 25y2 - 50x - 150y + 250

   9x2 + 9y2 + 14x - 118y + 170 = 0

On comparing, we get

a = 9, b = 9, c = 0, d = 14, e = -118

   a2 + 2b + 3c + 4d + e = 81 + 18 + 56 - 118 = 37



Q 3 :    

If the line segment joining the points (5, 2) and (2, a) subtends an angle π4 at the origin, then the absolute value of the product of all possible values of a is:          [2024]

  • 8

     

  • 2

     

  • 4

     

  • 6

     

(3)

m1 = 25, m2 = a2

Angle between the lines is π/4

Since, tan θ = |m1 - m21 + m1m2|

tan π4 = |25 - a21 + 25 × a2|   |25 -a  21 + a5|= 1

   |4 - 5a10 + 2a|= 1        4 - 5a10 + 2a = ±1

   4 - 5a10 + 2a = 1    or    4 - 5a10 + 2a = -1

   4 - 5a = 10 + 2a    or    4 - 5a = - 10 - 2a

   a = - 67    or    a = 143

   Required product = |- 67 × 143|= 4.



Q 4 :    

A ray of light coming from the point P(1, 2) gets reflected from the point Q on the x-axis and then passes through the point R(4, 3). If the point S(h, k) is such that PQRS is a parallelogram, then hk2 is equal to:          [2024]

  • 70

     

  • 90

     

  • 60

     

  • 80

     

(1)

Slope of P'R = 3 - (-2)4 - 1 = 53

Equation of P'R : y + 2 = 53 (x - 1)

Since, point Q is on x-axis.

Let Q  (a, 0)

Also, point Q lies P'R

   65 = a - 1    a = 115

Now, PQRS is a parallelogram

   h + a2 = 4 + 12  h = 5 - 115 = 145

and 2 + 32 = k2  k = 5

   hk2 = 145 × 25 = 70



Q 5 :    

Two vertices of a triangle ABC are A(3, –1) and B(–2, 3) and its orthocentre is P(1, 1). If the coordinates of the point C are (α, β) and the centre of the circle circumscribing the triangle PAB is (h, k), then the value of (α+β) + 2(h + k) equals          [2024]

  • 15

     

  • 5

     

  • 51

     

  • 81

     

(2)

Slope of AB = -1 - 33 + 2 = -45

Slope of PE = 54

Equation of PC is given y - 1 = 54 (x - 1)

   4y – 4 = 5x – 5

   5x – 4y – 1 = 0         ... (i)

Now slope of AP = -1 - 13 - 1 = -1

Slope of BC = 1

Equation of BC is given by

y – 3 = 1(x + 2)

   xy + 5 = 0         ... (ii)

Solving (i) and (ii), we get

β = y = 26             [  C is point of intersection of PC and BC]

and α = x = 21

Centre of circle circumseribing PAB is point of intersection of perpendicular bisector of AP, AB and AC.

Equation of perpendicular bisector of AP

(y - (-1 + 1)2) = 1(x - (3 + 1)2)

  y – 0 = x – 2

  y = x – 2         ... (iii)

Equation of perpendicular bisector of AB

y - (3 - 12) = 54 (x - (-2 + 32))

   y - 1 = 54 (x - 12)        ... (iv)

On solving (iii) and (iv), we get

x = h = -192  and  y = k= -232

   2(h + k) = -42

So, (α+β) + 2(h + k) = 47 - 42 = 5.



Q 6 :    

Let α, β, γ, δ  Z and let A(α, β), B(1, 0), C(γ, δ) and D(1, 2) be the vertices of a parallelogram ABCD. If AB = 10 and the points A and C lie on the line 3y = 2x + 1, then 2(α + β + γ + δ) is equal to          [2024]

  • 12

     

  • 10

     

  • 8

     

  • 5

     

(3)

Givem, A(α, β), B(1, 0), C(γ, δ) and D(1, 2).

Using mid point Formula.

α + γ=2

β + δ = 2

So, α + β + γ + δ = 2 + 2

α + β + γ + δ = 4

   2(α + β + γ + δ) = 2(4) = 8.



Q 7 :    

Let A(2, 1), B(1, 0), C(α, β) and D(γ, δ) be the vertices of a parallelogram ABCD. If the point C lies on 2xy = 5 and the point D lies on 3x – 2y = 6, then the value of |α + β + γ + δ| is equal to __________.           [2024]



(32)

We have, A(–2, –1), B(1, 0), C(α, β) and D(γ, δ) be the vertices of a parallelogram ABCD.

Since, C(α, β) lies on 2xy = 5

   2α - β = 5          ... (i)

Also, D(γ, δ) lies on the line 3x – 2y = 6

So, 3γ - 2δ = 6          ... (ii)

Now, γ + 12 = α - 22  and  δ + 02 = β - 12

γ + 1 = α - 2  and  δ = β - 1

γ = α - 3          ... (iii)

From (ii), 3(α - 3) - 2(β - 1) = 6

Solving (i) and (iii), we get

α = -3; β = -11; γ = -6; δ = -12

   |α + β + γ + δ| = |-3 - 11 - 6 - 12| = 32.