Q 11 :    

Let Cr1n=28Crn=56 and Cr+1n=70. Let A(4 cos t, 4 sin t), B(2 sin t, – 2 cos t) and X(3rn, t2n – 1) be the vertices of a triangle ABC, where t is a parameter. If (3x1)2+(3y)2=α, is the locus of the centroid of triangle ABC, then α equals         [2025]

  • 18

     

  • 8

     

  • 20

     

  • 6

     

(3)

We have, Cr1n=28Crn=56 and Cr+1n=70

Cr1nCrn=2856  n!(r1)!(nr+1)!×r!(nr)!n!=12

 r(nr+1)=12  3r=n+1          ... (i)

Also, CrnCr+1n=5670  r+1nr=45  9r=4n5         ... (ii)

From equations (i) and (ii), we get r = 3 and n = 8.

Now, A = (4 cos t, 4 sin t), B(2 sin t, – 2 sin t) and C(1, 0)

   Centroid of triangle is

               (4 xos t+2 sin t+13,4 sin t2 cos t3)

Then, (3x1)2+(3y)2=(4 cos t+2 sin t)2+(4 sin t 2cos t)2(3x1)2+(3y)2=20

So, value of α=20.



Q 12 :    

Let A(4, –2), B(1, 1) and C(9, –3) be the vertices of a triangle ABC. Then the maximum area of the parallelogram AFDE, formed with vertices D, E and F on the sides BC, CA and AB of the triangle ABC respectively, is __________..         [2025]



3

The maximum area of a parallelogram inscribed in a triangle is half the area of the triangle.

Now, Area of ABC=12|4(1(3))+1(3(2))+9(21)

                                             =12|16127|=6 sq. units

   Area of parallelogram AFDE = 3 sq. units.



Q 13 :    

Let A(6, 8), B(10 cos α, – 10 sin α) and C(–10 sin α, 10 cos α), be the vertices of a triangle. If L(a, 9) and G(h, k) be its orthocenter and centroid respectively, then (5a – 3h + 6k + 100 in 2α) is equal to __________.          [2025]



145

We can observe that all the three points A, B, C lie on the circle x2+y2=100, so circumcentre is (0, 0). Sice, centroid divides the line joining orthocentre and circumcentre in the ratio 2 : 1, then

a+03=h  a=3h

and 9+03=k  k=3

Also, 6+10 cos α10 sin α3=h

 10(cos αsin α)=3h6          ... (i)

and 8+10 cos α10 sin α3=k          ... (ii)

 10(cos αsin α)=3k8=98=1

On squaring, 100 (1 – sin 2α) = 1  100 sin 2α = 99

From (i) and (ii), we get h=73

Now, 5a – 3h + 6k +100 sin 2α

= 15h – 3h + 6k + 100 sin 2α12×73+18+99 = 145.