Q 1 :    

A metallic bar of Young's modulus, 0.5×1011 N m-2 and coefficient of linear thermal expansion 10-5°C-1, length 1 m and area of cross-section 10-3m2 is heated from 0°C to 100°C without expansion or bending. The compressive force developed in it is:           [2024]
 

  • 5×103N

     

  • 50×103N

     

  • 100×103N

     

  • 2×103N

     

(2)

Y=0.5×1011N/m2,  α=10-5/°C

l=1m,  A=10-3m2,  ΔT=100°C

F=YAαΔT

F=0.5×1011×10-3×10-5×100

F=50×103N



Q 2 :    

A copper rod of 88 cm and an aluminium rod of unknown length have their increase in length independent of increase in temperature. The length of aluminium rod is(αCu=1.7×10-5K-1,αAl=2.2×10-5K-1)               [2019]

  • 68 cm

     

  • 6.8 cm

     

  • 113.9 cm

     

  • 88 cm

     

(1)

As per question, ΔlCu=ΔlAl

or,   lCuαCuΔT=lAlαAlΔT

lAl=lCuαCuαAl=88×1.7×10-52.2×10-5=68 cm

 



Q 3 :    

Coefficient of linear expansion of brass and steel rods are α1 and α2. Lengths of brass and steel rods are l1 and l2 respectively. If (l2-l1) is maintained same at all temperatures, which one of the following relations holds good?               [2016, 1999]
 

  • α12l2=α22l1

     

  • α1l1=α2l2

     

  • α1l2=α2l1

     

  • α1l22=α2l12

     

(2)

Linear expansion of brass = α1

Linear expansion of steel = α2

Length of brass rod = l1, Length of steel rod = l2

On increasing the temperature of the rods by ΔT, new lengths would be

         l1'=l1(1+α1ΔT)                                    ...(i)

         l2'=l2(1+α2ΔT)                                    ...(ii)

Subtracting eqn. (i) from eqn. (ii), we get

      l2'-l1'=(l2-l1)+(l2α2-l1α1)ΔT

According to the question,

     l2'-l1'=l2-l1               (for all temperatures)

    l2α2-l1α1=0 or l1α1=l2α2



Q 4 :    

The value of coefficient of volume expansion of glycerin is 5×10-4K-1. The fractional change in the density of glycerin for a rise of 40°C in its temperature, is    [2015]
 

  • 0.025

     

  • 0.010

     

  • 0.015

     

  • 0.020

     

(4)

Let ρ0 and ρT be densities of glycerin at 0°C and T°C respectively. Then,

        ρT=ρ0(1-γΔT)

where γ is the coefficient of volume expansion of glycerine and ΔT is rise in temperature.

        ρTρ0=1-γΔT  or  γΔT=1-ρTρ0

Thus,  ρ0-ρTρ0=γΔT

Here, γ=5×10-4K-1 and ΔT=40°C=40K

   The fractional change in the density of glycerin

=ρ0-ρTρ0=γΔT=(5×10-4K-1)(40K)=0.020