Q 1 :    

The magnetic moment of a bar magnet is 0.5 Am2. It is suspended in a uniform magnetic field of 8×10-2 T. The work done in rotating it from its most stable to most unstable position is                            [2024]

  • 16×10-2J

     

  • zero

     

  • 8×10-2J

     

  • 4×10-2J

     

(C)     At stable equilibrium,U=-MBcos0°=-MB

          At unstable equilibrium,U=-MBcos180°=+MB

          U=2MB=2×0.5×8×10-2

         Work done,W=ΔU=2MB

         W=8×10-2J

 



Q 2 :    

A current of 200μA deflects the coil of a moving coil galvanometer through 60°. The current to cause deflection through π/10 radian is          [2024]

  • 30μA

     

  • 120μA

     

  • 60μA

     

  • 180μA

     

(C)     iθ(angle of deflection)

          i2i1=θ2θ1i2200μA=π/10π/3=310

          i2=60μA

 



Q 3 :    

A coil having 100 turns, area of 5×10-3 m2, carrying current of 1 mA is placed in a uniform magnetic field of 0.20 T in such a way that plane of coil is perpendicular to the magnetic field. The work done in turning the coil through 90° is ____ μJ.                        [2024]



(100)     W=ΔU=Uf-Ui

             W=|MBcos90°-MBcos0°|=MB

             W=(NIA)B=(100×5×10-3×1×10-3)×0.2J

             =1×10-4J=100μJ

 



Q 4 :    

The magnetic potential due to a magnetic dipole at a point on its axis situated at a distance of 20 cm from its center is 1.5×10-5 Tm. The magnetic moment of the dipole is _____. (Given: μ0/4π=10-7 TmA-1)                                 [2024]



(6)      The magnetic potential due to a magnetic dipole,

           V=μ04πMr2

           1.5×10-5=10-7×M(20×10-2)2

            M=1.5×10-5×20×20×10-410-7

           M=1.5×4=6



Q 5 :    

A moving coil galvanometer has 100 turns and each turn has an area of 2.0 cm². The magnetic field produced by the magnet is 0.01 T and the deflection in the coil is 0.05 radian when a current of 10 mA is passed through it. The torsional constant of the suspension wire is x×10-5 N-m/rad. The value of x is _____.                                 [2024]



(4)      Given,B=0.01T,i=10mA,N=100

           A=2×10-4m2:K=?

           τ=Kθ                                           (i)

           τ=BiNAsinϕ                            (ii)

          From (i) and (ii),Kθ=BiNAsin90°

          K=BiNAθ

         K=(0.01)×(10×10-3A)×(100)×(2×10-4m2)(0.05)

         K=2×10-45=205×10-5=4×10-5N-m/rad

         x=4

 



Q 6 :    

A uniform magnetic field of 2×10-3T acts along positive Y-direction. A rectangular loop of sides 20 cm and 10 cm with current of 5A is in Y-Z plane. The current is in anticlockwise sense with reference to negative X axis. Magnitude and direction of the torque is                     [2024]

  • 2×10-4N-m along positive Z-direction

     

  • 2×10-4N-m along negative Z-direction

     

  • 2×10-4N-m along positive X-direction

     

  • 2×10-4N-m along positive Y-direction

     

(2)

M=IA

=5×(0.2)×(0.1)(-i^)=0.1(-i^)

τ=M×B=0.1(-i^)×(2×10-3)(j^)

=2×10-4(-k^)N-m



Q 7 :    

A circular coil having 200 turns, 2.5×10-4m2 area and carrying 100 μA current is placed in a uniform magnetic field of 1 T. Initially, the magnetic dipole moment (M) was directed along  B. Amount of work, required to rotate the coil through 90° from its initial orientation such that M becomes perpendicular to B, is ____ μJ.           [2024]



(5)

Work done by external magnetic field ΔU=Uf-Ui

Initially, Ui=-MBcosθ=-MBcos0°=-MB

Finally, Uf=-MBcos90°=0

The magnetic moment of coil, M=NiA

M=(100×10-6)·(200)·(2.5×10-4)

Work, W=ΔU=MB=(5×10-6)(1)=5μJ