Q 1 :    

The displacement of a particle executing SHM is given by x=10 sin(ωt+π3)m. The time period of motion is 3.14s. The velocity of the particle at t=0 is _______ m/s.            [2024]



(10)          x=10sin(ωt+π3)

               ω=2πT=2π3.14=2rad/s

              at t=0,x=10sinπ3=53m

              now v=ω(A2-x2)=2102-(53)2

             v=2100-75=10m/s

 



Q 2 :    

A particle is doing simple harmonic motion of amplitude 0.06 m and time period 3.14 s. The maximum velocity of the particle is ________ cm/s.                    [2024]



(12)         Given:A=0.06cm

                T=2πω=3.14ω=2rad/s

                 Vmax=ωA=2×6100=12cm/s

 



Q 3 :    

An object of mass 0.2 kg executes simple harmonic motion along x axis with frequency of (25π)Hz. At the position x=0.04m the object has kinetic energy 0.5 J and potential energy 0.4 J. The amplitude of oscillation is ________ cm.                [2024]



(6)        Total energy =K.E.+P.E.

             x=0.04m,  T.E.=0.5+0.4=0.9J

             12×0.2(2π×25π)2×A2=0.9

             A=0.06m=6cm

 



Q 4 :    

The position, velocity and acceleration of a particle executing simple harmonic motion are found to have magnitudes of 4m, 2 ms-1 and 16 ms-2 at a certain instant. The amplitude of the motion is xm where x is ________.          [2024]



(17)        x=4m,v=2m/s,a=16m/s2

              |a|=ω2x

              16=ω2(4)

              ω=2rad/s

              v=ωA2-x2

              A=v2ω2+x2A=44+16=17m

 



Q 5 :    

A particle of mass 0.50 kg executes simple harmonic motion under force F=-50(Nm-1)x. The time period of oscillation is x35s. The value of x is _______ (Given π=227)           [2024]



(22)     Time period T=2πmk=2×227×0.5050=2235s

             On comparing x35=2235x=22

 



Q 6 :    

A particle executes simple harmonic motion with an amplitude of 4 cm. At the mean position, velocity of the particle is 10 cm/s. The distance of the particle from the mean position when its speed becomes 5 cm/s is α cm, where α= ______ .             [2024]



(12)        vmean=Aω10=4ω

                which gives,  ω=52rad/s

               v=ωA2-x2

               5=5242-x2x2=16-4=12

              x=12 cm

 



Q 7 :    

When the displacement of a simple harmonic oscillator is one third of its amplitude, the ratio of total energy to the kinetic energy is x/8, where x = __________.                  [2024]



(9)      E=12KA2

           U=12K(A3)2=KA22×9=E9

           KE=E-E9=8E9

           Ratio = EKE=E8E9=98x=9

 



Q 8 :    

A particle performs simple harmonic motion with amplitude A. Its speed is increased to three times at an instant when its displacement is 2A/3. The new amplitude of motion is nA/3. The value of n is ______ .           [2024]



(7)      v=ωA2-x2

           at x=2A3

           v=ωA2-(2A3)2=5Aω3 

            New amplitude = A'

            V'=3v=5Aω=ω(A')2-(2A3)2

            A'=7A3