Q 1 :    

The magnetic potential energy, when a magnetic bar of magnetic moment m is placed perpendicular to the magnetic field B is          [2024]
 

  • -mB2

     

  • zero

     

  • -mB

     

  • mB

     

(2)

The magnetic potential energy is given by

V=-m·B=-mBcosθ

when,    θ=90°;  V=-mBcos90°=0



Q 2 :    

The magnetic moment of an iron bar is M. It is now bent in such a way that it forms an arc section of a circle subtending an angle of 60° at the centre. The magnetic moment of this arc section is            [2024]
 

  • 3Mπ

     

  • 4Mπ

     

  • Mπ

     

  • 2Mπ

     

(1)

[IMAGE 228]----------------------------------

Let the length of the iron bar be L.
The magnetic moment of bar is given by

M=mL                                             ...(i)

Where, m is pole strength.

When the bar is bent in the form of an arc,

L=θ360×2πr=60°360°×2πr

L=πr3r=3Lπ

From PQS in the figure,

[IMAGE 229]----------------------------------------

sin30°=xrx=r2

Distance between PR=2x=r

New magnetic moment

M'=m×r

m×(3Lπ);  M'=3mLπ

From equation (i), M'=3Mπ



Q 3 :    

The magnetic moment and moment of inertia of a magnetic needle as shown are, respectively, 1.0×10-2A m2 and 10-6π2 kg m2.

[IMAGE 230]

If it completes 10 oscillations in 10 s, the magnitude of the magnetic field is                                [2024]
 

  • 0.4 T

     

  • 4 T

     

  • 0.4 mT

     

  • 4 mT

     

(3)

Magnetic moment, M=1.0×10-2Am2

Moment of inertia, I=10-6π2 kg m2

Time period for one oscillation 1010=1s

We know that, T=2πIMB

    T2=4π2IMB

B=4π2IMT2=4×(3.14)21×10-2×10-6(3.14)2=4×10-4=0.4 mT



Q 4 :    

In a uniform magnetic field of 0.049 T, a magnetic needle performs 20 complete oscillations in 5 seconds as shown. The moment of inertia of the needle is 9.8×10-6kgm2. If the magnitude of magnetic moment of the needle is x×10-5Am2, then the value of 'x' is           [2024]

[IMAGE 231]
 

  • 5π2

     

  • 128π2

     

  • 50π2

     

  • 1280π2

     

(4)

Time period of the needle, T=520=14s

Given, I=9.8×10-6kg m2,  M=x×10-5Am2,  B=0.049 T

Since, T=2πIMB

14=2π9.8×10-6x×10-5×0.04918π=9.8×10-6x×10-5×0.049

164π2=9.8×10-6x×10-5×0.049

x=64π2×9.8×10-10.049=1280π2



Q 5 :    

An iron bar of length L has magnetic moment M. It is bent at the middle of its length such that the two arms make an angle 60° with each other. The magnetic moment of this new magnet is           [2024]
 

  • M

     

  • M2

     

  • 2 M

     

  • M3

     

(2)

[IMAGE 232]------------------------

Mnet=(M2)2+(M2)2+2M2·M2cos120°

Mnet=M24×2-M24=M24=M2

 



Q 6 :    

A 250-turn rectangular coil of length 2.1 cm and width 1.25 cm carries a current of 85 μA and subjected to a magnetic field of strength 0.85 T. Work done for rotating the coil by 180° against the torque is             [2017]
 

  • 4.55 μJ

     

  • 2.3 μJ

     

  • 1.15 μJ

     

  • 9.1 μJ

     

(4)

Work done in a coil

W=mB(cosθ1-cosθ2)

When it is rotated by angle 180°, then

      W=2mB=2(NIA)B                                             ...(i)

Given,  N=250,  I=85μA=85×10-6A

            A=1.25×2.1×10-4m22.6×10-4m2

            B=0.85 T

Putting these values in eqn. (i), we get

        W=2×250×85×10-6×2.6×10-4×0.85

             9.1×10-6J=9.1 μJ



Q 7 :    

A bar magnet is hung by a thin cotton thread in a uniform horizontal magnetic field and is in equilibrium state. The energy required to rotate it by 60° is W. Now the torque required to keep the magnet in this new position is              [2016]

  • W3

     

  • 3W

     

  • 3W2

     

  • 2W3

     

(2)

At equilibrium, potential energy of dipole

   Ui=-MBH

Final potential energy of dipole, Uf=-MBHcos60°=-MBH2

W=Uf-Ui=-MBH2-(-MBH)=MBH2                          ...(i)

             τ=MBHsin60°=2W×32  [Using eqn. (i)]

             =3W

 



Q 8 :    

Following figures show the arrangement of bar magnets in different configurations. Each magnet has magnetic dipole moment m. Which configuration has highest net magnetic dipole moment?                  [2014]

[IMAGE 233]
 

  • (1)

     

  • (2)

     

  • (3)

     

  • (4)

     

(3)

The direction of magnetic dipole moment is from south to north pole of the magnet.

In configuration (1),

[IMAGE 234]---------------------------------

mnet=m2+m2+2mmcos90°=m2+m2=m2

In configuration (2),

[IMAGE 235]---------------------------------

In configuration (3),

[IMAGE 236]---------------------------------

mnet=m2+m2+2mmcos30°=2m2+2m2(32)=m2+3

In configuration (4),

[IMAGE 237]---------------------------------

mnet=m2+m2+2mmcos60°=2m2+2m2(12)=m3