Q 1 :    

A bob is whirled in a horizontal circle by means of a string at an initial speed of 10 rpm. If the tension in the string is quadrupled while keeping the radius constant, the new speed is            [2024]

  • 20 rpm

     

  • 40 rpm

     

  • 5 rpm

     

  • 10 rpm

     

(1)

[IMAGE 29]

Let r be radius of circle.

Here, tension provides the required centripetal force,

           Fc=mac

So, from initial condition,

            T=mrω2                                      ...(i)

and, from final condition,

           4T=mrω'2                                     ...(ii)

From eqn. (i) and (ii), we get

T4T=mrω2mrω'214=ω2ω'2ω'2=4ω2

ω'=2ω=2×10=20 rpm



Q 2 :    

A bob is whirled in a horizontal plane by means of a string with an initial speed of ω rpm. The tension in the string is T. If speed becomes 2ω while keeping the same radius, the tension in the string becomes                     [2024]
 

  • T

     

  • 4T

     

  • T4

     

  • 2T

     

(2)

When the bob is moving with speed 'ω', then FBD is,

[IMAGE 30]---------------------------------------------------------------------

Let 'r' be the radius of the circle.

Applying Newton’s second law on mass of the bob 'm' along centripetal direction, we have

T=mrω2                                              ...(i)

When speed becomes 2ω, the FBD is

[IMAGE 31]------------------------------------------------------------

T'=mr(2ω)2=mr(4ω2)

or mr=T'4ω2                                    ...(ii)

Using value of equation (ii) in equation (i),

T=T'ω24ω2=T'4

Hence, T'=4T



Q 3 :    

A particle is executing uniform circular motion with velocity v and acceleration a. Which of the following is true?        [2023]
 

  • vis a constant; a is not a constant

     

  • v is not a constant; a is not a constant

     

  • v is a constant; a is a constant

     

  • v is not a constant; a is a constant

     

(2)

Direction of velocity is changing so it is not a constant and centripetal acceleration changes continuously as v is not constant and therefore a is also not constant.

 



Q 4 :    

A block of mass 10 kg is in contact against the inner wall of a hollow cylindrical drum of radius 1 m. The coefficient of friction between the block and the inner wall of the cylinder is 0.1. The minimum angular velocity needed for the cylinder to keep the block stationary when the cylinder is vertical and rotating about its axis, will be (g = 10 m/s2)    [2019]
 

  • 10π rad/s

     

  • 10 rad/s

     

  • 102π rad/s

     

  • 10 rad/s

     

(4)

[IMAGE 32]

To keep the block stationary,

Frictional force  Weight

 μNMg

Here, N=Mω2r

r=1m, μ=0.1

For minimum ω, μMω2r=Mg

ω=gμr=100.1×1=10 rad s-1



Q 5 :    

One end of string of length l is connected to a particle of mass m and the other end is connected to a small peg on a smooth horizontal table. If the particle moves in circle with speed v, the net force on the particle (directed towards centre) will be (T represents the tension in the string)          [2017]
 

  • T+mv2l

     

  • T-mv2l

     

  • zero

     

  • T

     

(4)

 Centripetal force (mv2l) is provided by tension, so net force on the particle will be equal to tension T.

 



Q 6 :    

A car is negotiating a curved road of radius R. The road is banked at an angle θ. The coefficient of friction between the tyres of the car and the road is μs. The maximum safe velocity on this road is              [2016]
 

  • gR μs+tanθ1-μstanθ

     

  • gR2 μs+tanθ1-μstanθ

     

  • gR2 μs+tanθ1-μstanθ

     

  • gR μs+tanθ1-μstanθ

     

(4)

[IMAGE 33]

For vertical equilibrium on the road,

        Ncosθ=mg+fsinθmg=Ncosθ-fsinθ            ...(i)

Centripetal force for safe turning,  Nsinθ+fcosθ=mv2R        ...(ii)

From eqns. (i) and (ii), we get

v2Rg=Nsinθ+fcosθNcosθ-fsinθvmax2Rg=Nsinθ+μsNcosθNcosθ-μsNsinθ

vmax=Rg(μs+tanθ1-μstanθ)



Q 7 :    

Two stones of masses m and 2m are whirled in horizontal circles, the heavier one in a radius r/2 and the lighter one in radius r. The tangential speed of lighter stone is n times that of the value of heavier stone when they experience same centripetal forces. The value of n is           [2015]

  • 4

     

  • 1

     

  • 2

     

  • 3

     

(3)

Let v be tangential speed of heavier stone. Then, centripetal force experienced by lighter stone is

          (Fc)lighter=m(nv)2r

and that of heavier stone is (Fc)heavier=2mv2(r/2)

But (Fc)lighter=(Fc)heavier                              (given)

  m(nv)2r=2mv2(r/2) or, n2(mv2r)=4(mv2r)

        n2=4 or n=2