Q 1 :    

If 2 and 6 are the roots of the equation ax2+bx+1=0, then the quadratic equation, whose roots are 12a+b and 16a+b, is                   [2024]

  • 2x2+11x+12=0

     

  • x2+8x+12=0

     

  • 4x2+14x+12=0

     

  • x2+10x+16=0

     

(B)

   2 and 6 are the roots of the equation ax2+bx+1=0

       Sum of roots = -ba=8b=-8a

   Product of roots = 1a=12a=112

       b=-23. Now, 12a+b=12×112-23=-2

   and 16a+b=16×112-23=-61

       Required equation is (x+2)(x+6)=0

   i.e., x2+8x+12=0



Q 2 :    

Let α,β be roots of x2+2x-8=0. If Un=αn+βn, then U10+2U92U8 is equal to __________ .              [2024]



(4)

    Given that α,β are roots of x2+2x-8=0

   α2+2α-8=0 and β2+2β-8=0

   α2+2α=8 and β2+2β=8                            ...(i)

    Now, U10+2U92U8=α10+β10+2α9+2β92(α8+β8)

   =α9(α+2)+β9(β+2)2(α8+β8)

   =α9(8α)+β9(8β)2(α8+β8)                                                      [Using (i)]

   =8(α8+β8)2(α8+β8)=4

 



Q 3 :    

Let α,βN be roots of the equation x2-70x+λ=0, where λ2,λ3N. If λ assumes the minimum possible value, then (α-1+β-1)(λ+35)|α-β| is equal to _______ .           [2024]



(60)

Given α and β are roots of x2-70x+λ=0

α+β=70 and αβ=λ

We need to minimise λ

Let f=αβ=α(70-α).

So, f(α)=α(70-α)

0 and 70 are roots of f.

f has a minimum value at α=0 or 70

Now, λ2,λ3N

It means α and β should not be multiples of 2 and 3.

For α=1,β=69 which is a multiple of 3 similarly we can't take α=2,3,4.

So, for α=5,β=65

λ=αβ=325 is the minimum value of λ satisfying all the conditions.

Now, (α-1+β-1)(λ+35)|α-β|=(4+64)(360)|-60|=60