Q 51 :    

The integral 0π(x+3) sin x1+3 cos2 xdx is equal to          [2025]

  • π23(π+4)

     

  • π3(π+1)

     

  • π3(π+2)

     

  • π33(π+6)

     

(4)

Let, I=0π(x+3) sin x1+3 cos2 xdx          ... (i)

Replace x to πx,

I=0π(πx+3) sin (πx)1+3 cos2 (πx)dx

 I=0π(π+3) sin xx sin x1+3 cos2 xdx          ... (ii)

Adding equation (i) and (ii), we get

2I=0π(x+6) sin x1+3 cos2 xdx

Let cos x = t  – sin x dx = dt

2I=(π+6)11dt(1+3t2)=(π+63)11dtt2+(13)2

 2I=(π+63)·1(13)·tan1(t1/3)|11

 2I=(π+63)[tan1(3)tan1(3)]

 2I=(π+63)·(π3(π3))=(π+63·2π3)

 I=π(π+6)33.



Q 52 :    

The integral 13/2(|π2xsin(πx)|)dx is equal to :          [2025]

  • 3+2π

     

  • 4+π

     

  • 1+3π

     

  • 2+3π

     

(3)

Let I=13/2|π2xsinπx|dx

=π2[11xsinπxdx13/2xsinπxdx]

=π2[201xsinπxdx13/2xsinπxdx]

=π2[2[xcosπxπ+sinπxπ2]01[xcosπxπ+sinπxπ2]13/2]

=π2[2π(1π21π)]=π2[3π+1π2]

=3π+1.



Q 53 :    

Let f(x) be a positive function and I1=1/212xf(2x(12x))dx and I2=12f(x(1x))dx. Then the value of I2I1 is equal to _______         [2025]

  • 12

     

  • 6

     

  • 4

     

  • 9

     

(3)

I1=1/212xf(2x(12x))dx

Let 2x=t  2dx=dt

when x=12, t=1 and

When for x = 1, t = 2

  I1=1212tf(t(1t))dt

 2I1=12(1t)f((1t)(1(1t)))dt

 2I1=12f(t(1t))dt12tf(t(1t))dt

 2I1=I22I1  4I1=I2

 I1I2=14 i.e., I2I1=4



Q 54 :    

Let for f(x)=7tan8x+7tan6x3tan4x3tan2xI1=0π/4f(x)dx and I2=0π/4xf(x)dx. Then 7I1+12I2 is equal to :          [2025]

  • 2

     

  • π

     

  • 1

     

  • 2π

     

(3)

We have, f(x)=7tan8x+7tan6x3tan4x3tan2x

=7tan6x(tan2x+1)3tan2x(tan2x+1)

=(7tan6x3tan2x)sec2x

I1=0π/4(7tan6x3tan2x)sec2xdx

Putting tan x = t  sec2xdx=dt

I1=01(7t63t2)dt=[t7t3]01=0

I2=0π/4x(7tan6x3tan2x)sec2xdx

=01(7t63t2)tan1tdt

=[tan1t(t7t3)]0101t7t31+t2dt=001t3(t41)1+t2dt

=01t3(t21)dt=01(t5t3)dt=[t66t44]01=112

  7I1+12I2=0+12(112)=1.



Q 55 :    

Let f(x)=0x2t28t+15etdt, xR. Then the numbers of local maximum and local minimum points of f, respectively, are :           [2025]

  • 2 and 3

     

  • 3 and 2

     

  • 2 and 2

     

  • 1 and 3

     

(1)

From Leibnitz theorem,

f'(x)=(x48x2+15ex2)(2x)

=(x23)(x25)(2x)ex2

=(x3)(x+3)(x5)(x+5)2xex2

 f'(x)=0  x=±3,0,±5

Maxima at x{3,3}

Minima at x{5,0,5}

Hence, 2 points of maxima and 3 points of minima.



Q 56 :    

The value of e2e41x(e((logex)2+1)1e((logex)2+1)1+e((6logex)2+1)1)dx is          [2025]

  • loge2

     

  • 1

     

  • e2

     

  • 2

     

(2)

Let logex=t  1xdx=dt

 I=24e1t2+1e1t2+1+e1(6t)2+1dt         ... (i)

 I=24e1(6t)2+1e1(6t)2+1+e1t2+1dt             [ abf(x)dx=abf(b+ax)dx]          ... (ii)

Adding (i) and (ii), we get

2I=24dt=[t]24=42=2  2I=2  I=1.



Q 57 :    

If I=0π2sin32xsin32x+cos32xdx, then 02Ixsinx cosxsin4x+cos4xdx equals:          [2025]

  • π212

     

  • π216

     

  • π28

     

  • π24

     

(2)

We have, I=0π/2sin32xsin32x+cos32xdx          ... (i)

I=0π/2cos32xcos32x+sin32xdx          ... (ii)

Adding equation (i) and (ii), we get

2I=0π/2dx=π2  I=π4

Let, I2=02Ixsinx cosxsin4x+cos4xdx=0π/2xsinx cosxsin4x+cos4xdx          ... (iii)

 I2=0π/2(π2x) sinx cosxdxcos4x+sin4x          (iv)

Adding (iii) and (iv), we get

I2=π40π/2tanx sec2xdxtan4x+1

Now, put tan2x=t

I2=π80dtt2+1=π8tan1(t)|0=π8·π2=π216



Q 58 :    

If I(m,n)=01xm1(1x)n1dx, m, n > 0, then I(9, 14) + I(10, 13) is          [2025]

  • I(19,27)

     

  • I(1,13)

     

  • I(9,13)

     

  • I(9,1)

     

(3)

I(m,n)=01xm1(1x)n1dx,m,n>0

Let x=sin2θ  dx=2sinθ cosθ 

  I(m,n)=0π/2sin2m2θ×(1sin2θ)n1×2sinθcosθdθ

                         =20π/2sin2m1θ×cos2n1θ dθ

  I(9,14)+I(10,13)=20π/2sin17θ cos27θ +20π/2sin19θ cos25θ 

=20π/2sin17θ cos25θ(cos2θ+sin2θ)dθ

=20π/2sin17θ cos25θ =I(9,13).



Q 59 :    

If π2π296x2cos2x(1+ex)dx=π(απ2+β), α, βZ, then(α+β)2 be equals          [2025]

  • 64

     

  • 144

     

  • 100

     

  • 196

     

(3)

Let I=π2π296x2cos2x(1+ex)dx             ... (i)

 I=π2π296x2cos2x(1+ex)dx            ... (ii)

                       [abf(x)dx=abf(a+bx)dx]

Adding equations (i) and (ii), we get

     2I=π/2π/296x2cos2x1+exdx+π/2π/2ex(96x2cos2x)ex+1dx

                =20π/296x2cos2xdx

 I=0π/296x2cos2xdx

               =48 0π/2x2(1+cos 2x)dx

                =48[[x33]0π/2+0π/2x2cos 2xdx]

 I=48·π324+[x2sin 2x2]0π/20π/2x sin 2x

               =48[π324+[x cos 2x2]0π/214[sin 2x]0π/2]

 I=48[π324π4]=π(2π212)

So, α=2, β=12

  (α+β)2=(212)2=(10)2=100.



Q 60 :    

Let f be a real valued continuous function defined on the positive real axis such that g(x)=0xtf(t)dt. If g(x3)=x6+x7, then value of r=115f(r3) is :          [2025]

  • 270

     

  • 340

     

  • 320

     

  • 310

     

(4)

We have, g(x)=0xtf(t)dt

g(x)=x2+x7/3  g'(x)=2x+73x4/3

As, f(x)=g'(x)x=2+73x1/3  f(r3)=2+7r3

  r=115(2+73r)=30+73[1+2+...+15]=310