Q 1 :    

The ratio of solubility of AgCl in 0.1 M KCl solution to the solubility of AgCl in water is (Given: Solubility product of AgCl = 10-10)        [2024]

  • 10-4

     

  • 10-6

     

  • 10-9

     

  • 10-5

     

(1)

Let the solubility of AgCl in water be s and in KCl be S.

AgClAg++Cl-Solubility in water:ssSolubility in KCl:SS+0.1

Ksp=[Ag][Cl]=10-10

For water, Ksp=s2s=10-5

For KCl, Ksp=S(S+0.1)

S(0.1)=10-10

S=10-9  (as, S<<<<0.1)

Solubility of AgCl in KClSolubility of AgCl in water= 10-910-5=10-4



Q 2 :    

pH of a saturated solution of Ca(OH)2 is 9. The solubility product (Ksp) of Ca(OH)2 is             [2019]

  • 0.5×10-10

     

  • 0.5×10-15

     

  • 0.25×10-10

     

  • 0.125×10-15

     

(2)

pH of the saturated solution of Ca(OH)2 = 9

  pOH of the saturated solution of Ca(OH)2=14-9=5

[OH-]=10-5      (pH+pOH=14)

Ca(OH)2Ca2++2OH-s2s12×10-510-5

Ksp=[Ca2+][OH-]2=[12×10-5][10-5]2

=0.5×10-15



Q 3 :    

The molar solubility of CaF2 (Ksp=5.3×10-11) in 0.1 M solution of NaF will be        [2019]

  • 5.3×10-11 mol L-1

     

  • 5.3×10-8 mol L-1

     

  • 5.3×10-9 mol L-1

     

  • 5.3×10-10 mol L-1

     

(3)

CaF2Ca2+s+2F-2s

NaF→Na+0.1 M+F-0.1 M

[Ca2+]=s,  [F-]=(2s+0.1)0.1 M

Ksp=[Ca2+][F-]2

5.3×10-11=(s)(0.1)2

s=5.3×10-11(0.1)2=5.3×10-9 mol L-1

   Molar solubility is 5.3×10-9 mol L-1



Q 4 :    

The solubility of BaSO4 in water is 2.42×10-3 g L-1 at 298 K. The value of its solubility product (Ksp) will be (Given molar mass of BaSO4=233 g mol-1)               [2018]

  • 1.08×10-10 mol2 L-2

     

  • 1.08×10-12 mol2 L-2

     

  • 1.08×10-14 mol2 L-2

     

  • 1.08×10-8 mol2 L-2

     

(1)

Solubility of BaSO4

s=2.42×10-3233 mol L-1=1.04×10-5 mol L-1

BaSO4 ionizes completely in the solution as: BaSO4(s)Ba(aq)2++SO4(aq)2-

Ksp=[Ba2+][SO42-]=s2

=(1.04×10-5)2=1.08×10-10 mol2 L-2



Q 5 :    

Concentration of the Ag+ ions in a saturated solution of Ag2C2O4 is 2.2×10-4 mol L-1. Solubility product of Ag2C2O4 is       [2017]

  • 2.66×10-12

     

  • 4.5×10-11

     

  • 5.3×10-12

     

  • 2.42×10-8

     

(3)

Let solubility of Ag2C2O4 be s mol L-1 

Ag2C2O4(s)s2Ag(aq)+2s+C2O4(aq)2-s

Ksp=[Ag+]2[C2O42-]

Ksp=(2s)2(s)=4s3

Ksp=4×(1.1×10-4)3  ([Ag+]=2s=2.2×10-4)

Ksp=5.3×10-12



Q 6 :    

The solubility of AgCl(s) with solubility product 1.6×10-10 in 0.1 M NaCl solution would be          [2016]

  • 1.26×10-5 M

     

  • 1.6×10-9 M

     

  • 1.6×10-11 M

     

  • zero

     

(2)

Let s be the solubility of AgCl in moles per litre.

AgCl(aq)sAg(aq)+s+Cl(aq)-(s+0.1)

( 0.1 M NaCl solution also provides 0.1 M Cl- ion)

Ksp=[Ag+][Cl-]  ;  1.6×10-10=s(s+0.1)

1.6×10-10=s(0.1)                                    (s<<<<0.1)

s=1.6×10-100.1=1.6×10-9 M



Q 7 :    

MY and NY3, two nearly insoluble salts, have the same Ksp values of 6.2×10-13 at room temperature. Which statement would be true in regard to MY and NY3 ?                     [2016]

  • The salts MY and NY3 are more soluble in 0.5 M KY than in pure water.

     

  • The addition of the salt of KY to solution of MY and NY3 will have no effect on their solubilities.

     

  • The molar solubilities of MY and NY3 in water are identical.

     

  • The molar solubility of MY in water is less than that of NY3.

     

(4)

For MY: Ksp=s12

s1=Ksp=6.2×10-13=7.87×10-7 mol L-1

For NY3: Ksp=(s2)(3s2)3=27s24

s2=6.2×10-13274=3.89×10-4 mol L-1

Hence, molar solubility of MY in water is less than that of NY3.



Q 8 :    

The Ksp of Ag2CrO4, AgCl, AgBr and AgI are respectively,  1.1×10-12, 1.8×10-10, 5.0×10-138.3×10-17. Which one of the following salts will precipitate last if AgNO3 solution is added to the solution containing equal moles of NaCl, NaBr, NaI and Na2CrO4?         [2015]

  • AgBr

     

  • Ag2CrO4

     

  • AgI

     

  • AgCl

     

(2)
 

Salt Ksp Solubility
Ag2CrO4 1.1×10-12=4s3 s=Ksp43=0.65×10-4
AgCl 1.8×10-10=s2 s=Ksp=1.34×10-5
AgBr 5×10-13=s2 s=Ksp=0.71×10-6
AgI 8.3×10-17=s2 s=Ksp=0.9×10-8


Solubility of Ag2CrO4 is highest, thus it will be precipitated at last.



Q 9 :    

Using the Gibbs' energy change, ΔG°=+63.3 kJ, for the following reaction, Ag2CO3(s)2Ag(aq)++CO32-(aq)

the Ksp of Ag2CO3(s) in water at 25Co is (R=8.314 J K-1 mol-1)         [2014]

  • 3.2×10-26

     

  • 8.0×10-12

     

  • 2.9×10-3

     

  • 7.9×10-2

     

(2)

ΔG°=-2.303RTlogKsp

63.3×103J=-2.303×8.314×298logKsp

63.3×103J=-5705.84logKsp

logKsp=-63.3×1035705.84=-11.09

Ksp=antilog(-11.09)=8.128×10-12