Identify the factor from the following that does not affect electrolytic conductance of a solution. [2024]
The nature of solvent used.
Concentration of the electrolyte.
The nature of the electrode used.
The nature of the electrolyte added.
(3)
1. HCl in water is almost 100 percent ionized whereas HCl in is almost unionised. The two solutions have different conductance. Hence conductance depends upon nature of solvent.
2. For strong as well as weak electrolyte, conductance increases with dilution.
3. Conductance does not depend upon nature of electrode used.
4. For same concentration, strong electrolyte has more conductance than weak electrolyte.
For a strong electrolyte, a plot of molar conductivity against is a straight line, with a negative slope, the correct unit for the slope is [2024]
(4)
For strong electrolytes, variation of molar conductivity with concentration (C) is given by:
, where is limiting molar conductivity i.e., molar conductivity at infinite dilution.
From this equation, slope is A.
Substituting units of all terms:
Molar ionic conductivities of divalent cation and anion are 57 S and 73 S respectively. The molar conductivity of solution of an electrolyte with the above cation and anion will be: [2024]
(3)
Salt of divalent cation and divalent anion is AB.
It dissociates in water as:
By Kohlrausch's law:
Which out of the following is a correct equation to show change in molar conductivity with respect to concentration for a weak electrolyte, if the symbols carry their usual meaning: [2024]
(4)
Consider solution of a weak electrolyte AB with concentration C mol/L, undergoing dissociation in water with degree of dissociation .
is related to and as
Put from II in I
The values of conductivity of some materials at 298.15 K in are The number of conductors among the materials is ___________ . [2024]
(4)
Conductivity at 298.15 K (in ) | Material | Classification |
sodium | conductor | |
glass | insulator | |
graphite | conductor | |
0.1M HCl | conductor | |
Si | semiconductor | |
CuO | semiconductor | |
iron | conductor |
A conductivity cell with two electrodes (dark side) are half filled with infinitely dilute aqueous solution of a weak electrolyte. If volume is doubled by adding more water at constant temperature, the molar conductivity of the cell will [2024]
depend upon type of electrolyte
increase sharply
remain same or cannot be measured accurately
decrease sharply
(3)
Upon dilution, molar conductivity increases because upon dilution, more of the electrolyte is dissociated and more charge carriers are created. Once all of the weak electrolyte is dissociated (at infinite dilution), then molar conductivity does not increase further and becomes constant at a given temperature. cannot be measured accurately for a weak electrolyte; it is calculated by Kohlrausch law.
The molar conductivity for electrolytes A and B are plotted against as shown below. Electrolytes A and B respectively are: [2024]
A: Strong electrolyte, B: Strong electrolyte
A: Strong electrolyte, B: Weak electrolyte
A: Weak electrolyte, B: Strong electrolyte
A: Weak electrolyte, B: Weak electrolyte
(3)
Correct order of limiting molar conductivity for cations in water at 298 K is : [2025]
(2)
Among cations has highest molar conductivity in water.
This is because is conducted by transfer between water molecules.
For other ions, . Thus
For ions carrying same charge, smaller ions are more hydrated, hence their limiting molar conductivity is lesser as
Thus
Thus correct order of limiting molar conductivity is:
The molar conductivity of a weak electrolyte when plotted against the square root of its concentration, which of the following expected to be observed? [2025]
Molar conductivity decreases sharply with increase in concentration.
A small increase in molar conductivity is observed at infinite dilution.
A small decrease in molar conductivity is observed at infinite dilution.
Molar conductivity increases sharply with increase in concentration.
(1)
With dilution, degree of dissociation of weak electrolyte increases hence number of charge carriers rise sharply and molar conductivity increases sharply.
Given below are two statements : [2025]
Statement I : Mohr’s salt is composed of only three types of ions – ferrous, ammonium and sulphate.
Statement II : If the molar conductance at infinite dilution of ferrous, ammonium and sulphate ions are and S , respectively, then the molar conductance for Mohr’s salt solution at infinite dilution would be given by
In the light of the given statements, choose the correct answer from the options given below :
Both statements I and Statement II are false.
Statement I is false but Statement II is true.
Statement I is true but Statement II are false.
Both statements I and Statement II are true.
(3)
Statement I
Mohr's salt:
Statement II:
By Kohlrausch law