Q 1 :    

A wire of resistance R and length L is cut into 5 equal parts. If these parts are joined parallely, then resultant resistance will be                       [2024]

 

  • 1/25 R

     

  • 1/5 R

     

  • 25 R

     

  • 5 R

     

(1)       

            Resistance of each part = R5

            Total resistance = 15×R5=R25

 



Q 2 :    

In the given figure R1=10Ω,R2=8Ω,R3=4Ω and R4=8Ω. Battery is ideal with emf 12 V. Equivalent resistance of the circuit and current supplied by battery are respectively           [2024]

  • 10.5Ω and 1.14A

     

  • 12Ω and 1A

     

  • 10.5Ω and 1A

     

  • 12Ω and 11.4A

     

(2)

Here R2,R3,R4 are in parallel,

1R234=1R2+1R3+1R4R234

R234 is in series with R1, so

Equivalent resistant, Req=R234+R1=2+10=12Ω

The current supplied by the battery, i=1212=1A



Q 3 :    

The equivalent resistance between A and B is:             [2024]

  • 18Ω

     

  • 25Ω

     

  • 27Ω

     

  • 19Ω

     

(4)

Req=5Ω+6Ω+8Ω=19Ω

 



Q 4 :    

The effective resistance between A and B, if resistance of each resistor is R, will be               [2024]

  • 23R

     

  • 8R3

     

  • 5R3

     

  • 4R3

     

(2)

From symmetry we can remove two middle resistances. New circuit is

 



Q 5 :    

Twelve wires each having resistance 2Ω are joined to form a cube. A battery of 6V emf is joined across points a and c. The voltage difference between e and f is ____ V.   [2024]



(1)

 Req=R×3RR+3R=34RReq=34×2=32Ω

 Current through battery =6×23=4A

The current through a-h,iah=48×2=1A

  V across e-f=iah2×R=12×2=1V



Q 6 :    

A wire of resistance 20 Ω is divided into 10 equal parts, resulting pairs. A combination of two parts are connected in parallel and so on. Now resulting pairs of parallel combination are connected in series. The equivalent resistance of final combination is ____ Ω.             [2024]



(5)

Resistance of each part R=2010=2Ω

2 parts are connected in parallel R'=22=1Ω

Now, there will be 5 parts, each of resistance 1Ω, they are connected in series.

Req=5R'Req=5Ω



Q 7 :    

Equivalent resistance of the following network is _______ Ω.                [2024]



(1)

Req=3×13=1Ω



Q 8 :    

Find the equivalent resistance between two ends of the following circuit.          [2025]

  • r

     

  • r6

     

  • r9

     

  • r3

     

(3)

 1Req=1r3+1r3+1r3

Or Req=r9



Q 9 :    

A wire of resistance R is bent into an equilateral triangle and an identical wire is bent into a square. The ratio of resistance between the two end points of an edge of the triangle to that of the square is          [2025]

  • 9/8

     

  • 8/9

     

  • 27/32

     

  • 32/27

     

(4)

For the wire bent into an equilateral triangle, each side has a resistance R3

Req=(2R3)(R3)2R3+R3=2R9=R1   (lets say)

.For the wire bent into a square, each side has a resistance R4

.Req=(3R4)(R4)3R4+R4=3R16=R3   (lets say)

 R1R3=2R93R16=3227



Q 10 :    

A wire of length 25 m and cross-sectional area 5 mm2 having resistivity of 2×106Ωm is bent into a complete circle. The resistance between diametrically opposite points will be         [2025]

  • 12.5 Ω

     

  • 50 Ω

     

  • 100 Ω

     

  • 25 Ω

     

(none)

Let R be total resistance across ends of wire, then

R=ρLA=2×106×255×106=10Ω

Req=R4=104=2.5Ω