Q 11 :

The sum of exponents of prime factors in the prime-factorisation of 196 is:

  • 3

     

  • 4

     

  • 5

     

  • 2

     

(2)

We have, 196 = 2² × 7² Sum of exponents = 2 + 2 = 4

 



Q 12 :

Let a and b be two positive integers such that a=p3 q4  and  𝑏 = 𝑝2 q3 where p and q are prime numbers. If HCF (a,b) = pm qn and LCM (a,b) =pr qs , then
(m+n) (r+s) =

  • 15

     

  • 30

     

  • 35

     

  • 72

     

(3)

Given, a=p3 q4, b=p2 q3 HCF (a, b)=p2 q3 and LCM (a, b)=p3 q4

Comparing with the HCF and LCM given in the question, we get

HCF (a, b) = pm qn=p2 q3m=2,n=3and LCM  (a,b) = pr qs=p3 q4r=3,s=4(m+n)(r+s)=(2+3)(3+4)=5×7=35

 



Q 13 :

The LCM of two prime numbers p and q (p>q) is 221. Find the value of 3p−q.

  • 4

     

  • 28

     

  • 38

     

  • 48

     

(3)

p and q (p > q) are prime numbers, HCF (p,q) = 1

Given, LCM (p,q) = 221

LCM (p,q)×HCF (p,q)=p×q1×221=p×qp×q=221So,  p=17,q=13(p>q)3pq=3×1713=5113=38

 



Q 14 :

If LCM(x, 18) = 36 and HCF(x, 18) = 2, then x is:

  • 2

     

  • 3

     

  • 4

     

  • 5

     

(3)

Given LCM (x, 18) = 36 and HCF (x, 18) = 2 LCM (x, 18) × HCF (x, 18) = x × 18 36 × 2 = x × 18 x = (36 × 2) ÷ 18 = 4

 



Q 15 :

If the sum of two numbers is 1215 and their HCF is 81, then the possible number of pairs of such numbers are:

  • 2

     

  • 3

     

  • 4

     

  • 5

     

(3)

HCF = 81, let the two numbers be 81x and 81y.
According to the question,

81 x +81 y  = 1215
x + y = 1215

The gives 4 co-prime pairs (1, 14), (2, 13), (4, 11), (7, 8)



Q 16 :

If two positive integers p and q are written as p=x2 y2  and  𝑞 = xy3, where x and y are prime numbers, then HCF(p, q) is:

  • xy

     

  • xy2

     

  • x3 y3

     

  • -x2 y2

     

(2)

We have,

 p=x2y2q=xy3HCF(p,q)=xy2



Q 17 :

If HCF and LCM of two numbers are respectively (n  1) and (n²  1)(n²  4), then the product of the two numbers will be:

  • (n²  1)(n²  4)

     

  • (n² + 1)(n²  1)(n²  4)

     

  • (n²  4)(n + 1)(n  1)²

     

  • (n²  1)(n² + 1)(n  1)

     

(3)

We have, HCF = (n  1) and LCM = (n²  1)(n²  4)We know that product of two numbers = LCM × HCFSo product of two numbers = (n  1)(n²  1)(n²  4)= (n  1)(n  1)(n + 1)(n²  4)= (n + 1)(n  1)²(n²  4)

 



Q 18 :

If the LCM of P and 18 is 36 and the HCF of P and 18 is 2, then P equals:

  • 2

     

  • 3

     

  • 1

     

  • 4

     

(4)

We know that LCM (a, b) × HCF (a, b) = a × b

 LCM (P, 18) × HCF (P, 18) = P × 18

 36 × 2 = P × 18  72 = 18P

 P = 72 ÷ 18 = 4

 



Q 19 :

If HCF (26, 169) = 13, then LCM (26, 169) equals:

  • 26

     

  • 52

     

  • 20

     

  • 338

     

(4)

HCF (26, 169) × LCM (26, 169) = 26 × 169  ( LCM (a, b) × HCF (a, b) = a × b)

 13 × LCM (26, 169) = 26 × 169

 LCM (26, 169) = (26 × 169) ÷ 13 = 338

 



Q 20 :

The ratio between the LCM and HCF of 5, 15, 20 is:

  • 9 : 1

     

  • 4 : 3

     

  • 11 : 1

     

  • 12 : 1

     

(4)

We have, 5 = 1 × 5; 15 = 3 × 5 and 20 = 2 × 2 × 5 LCM (5, 15, 20) = 3 × 4 × 5 = 60and HCF (5, 15, 20) = 5Therefore, ratio between the LCM and HCF = 60 ÷ 5 = 12 : 1