Q 1 :    

The de-Broglie's wavelength of an electron in the 4th orbit is _________ πa0. (a0 = Bohr's radius)               [2024]



(8)            De-Broglie's wavelength (λ) is related to mass (m) and velocity v of electron by:

                λ=hmv-I, where h is Planck's constant.

               By quantization of angular momentum:

               mvr=nh2π-II

               Where n is orbit number and r is radius of nth orbit.

               Rearranging equation II

               2πr=nhmv-III

               From I and III

                2πr=nλ-IV

               Radius (r) of nth orbit is related to radius of first orbit (a0) as:

               r=a0n2Z-V

               From IV and V:

               2πa0n2Z=nλ

               λ=2πa0nZ

               Taking atom to be H, Z = 1 and for fourth orbit, n = 4

                λ=2πa041=8πa0

 



Q 2 :    

Frequency of the de-Broglie wave of electron in Bohr's first orbit of hydrogen atoms is ________ ×1013 Hz (nearest integer). (Given: RH (Rydberg constant) = 2.18×10-18 J, h (Plank's constant) =6.6×10-34 J.s.)               [2024]



(656)          Velocity (v) of electron in nth orbit of single electron specie with atomic number Z is given by:

                   v=2.18×106Znm/s                                      ...(i)

                   Radius (r) of nth orbit of single electron specie with atomic number Z is given by:

                   r=0.529×10-10n2Zm                              ...(ii)

                  Circumference of nth orbit is integral multiple of wavelength (λ) of electron i.e.

                   2πr=nλ

                   λ=2πrn                                                              ...(iii)

                  Frequency (v) is related to velocity (v) and wavelength (λ) by:

                  ν=vλ                                                                   ...(iv)

                   Put λ from (iii) in (iv)

                   ν=v2πr/n                                                       ...(v)

                  Put v and r from (i) and (ii) in (iv)

                  ν=2.18×106Zn(2π×0.529×10-10n2Z)/n=2.18×1016Z22π×0.529n2

                  For H, Z = 1 and for first orbit n = 1

                  ν=2.18×1016×(1)22π×0.529×(1)2=656×1013Hz

 



Q 3 :    

Based on Heisenberg's uncertainty principle, the uncertainty in the velocity of the electron to be found within an atomic nucleus of diameter 10-15 m is ______ ×109ms-1 (nearest integer) [Given: mass of electron = 9.1×10-31 kg, Plank's constant (h)=6.626×10-34 Js] (Value of π=3.14)            [2024]



(58)            Δx×mΔvh4π

                  Δx=10-15m

                  Substituting other values:

                   10-15×9.1×10-31×Δv6.626×10-344×3.14

                    Δv58×109m/s



Q 4 :    

According to the wave-particle duality of matter by de-Broglie, which of the following graph plot presents most appropriate relationship between wavelength of electron (λ) and momentum of electron (p)?                [2024]

  •  

  •  

  •  

  •  

(1)

According to de-Broglie hypothesis, wavelength (λ) of a particle is related to its momentum (p) as:

λ=hp or λp=h

Where h is a constant called planck's constant.

Graph of λ v/s p with λp = constant is a rectangular hyperbola.



Q 5 :    

If a0 is denoted as the Bohr radius of hydrogen atom, then what is the de-Broglie wavelength (λ) of the electron present in the second orbit of hydrogen atom? [n : any integer]                         [2025]
 

  •  2a0nπ

     

  • 4πa0n

     

  • 8πa0n

     

  • 4nπa0

     

(3)

By de Broglie's equation:

λ=hmv

mv=hλ-I

By quantization of angular momentum:

mvr=nh2π-II

II/I gives:

mvrmv=nλ2π

2πr=nλ

2π×a0n2Z=nλ

2π×a0nZ=λ

For second Bohr orbit, n = 2 and for H atom Z = 1

2π×a021=λ

λ=4πa01

Putting n= 2 in option (3) gives the correct answer.

 



Q 6 :    

Given below are two statements:

Statement I: It is impossible to specify simultaneously with arbitrary precision, both the linear momentum and the position of a particle.

Statement II: If the uncertainty in the measurement of position and uncertainty in measurement of momentum are equal for an electron, then the uncertainty in the measurement of velocity is hπ×12m.

In the light of the above statements, choose the correct answer from the options given below:             [2025]

  • Both Statement I and Statement II are true

     

  • Statement I is false but Statement II is true

     

  • Statement I is true but Statement II is false

     

  • Both Statement I and Statement II are false

     

(1)

Statement I: This is Heisenberg's Uncertainty Principle.

Statement II:  ΔxΔph4π,  ΔpΔph4π,

                      Δph4π,  Δv1mh4π