Q 11 :    

Let the line L : 2x+y=α pass through the point of the intersection P (in the first quadrant) of the circle x2+y2=3 and the parabola x2=2y. Let the line L touch two circles C1 and C2 of equal radius 23. If the centres Q1 and Q2 of the circle C1 and C2 lie on the y-axis, then the square of the areas of the triangle PQ1Q2 is equal to __________.          [2024]



(72)

We have, L : 2x+y=α

 x2+y2=3         ... (i)

  x2=2y             ... (ii)

Equation (i) and (ii) intersect at (2, 1) in first quadrant.

  P=(2,1)  and  α=2×2+1=3

 α=3

Radius of Circle C1 and C2=23

We centre C1 & C2 of two circle are (0, y1) and (0, y2) respectively.

We know that length of perpendicular from centre to the tangent = Radius of circle

 |2×0+y33|=23

 |y3|=6  y=9, 3

  y1=3, y2=9

  Centre of C1 and C2 are Q1(0, 3) and Q2(0, 9) respectively.

Q1Q2=12 units, Height of triangle =2 units

A = Area of triangle PQ1Q2=12×12×2

                                   [  Area of PQ1Q2=12×Q1Q2×height]

=62 sq. units

 A2=72.



Q 12 :    

Let P(α, β) be a point on the parabola y2=4x. If P also lies on the chord of the parabola x2=8y whose mid point is (1, 54), then (α28)(β8) is equal to __________.          [2024]



(192)

We α = t2, β = 2t

Now, equation of chord of the parabola x2=8y, bisected at (1, 54) is x·12×2(y+54)=110

 x4y5=9  x4y+4=0

Now, (α, β) satisfies the above equation

  t28t+4=0            ... (i)

Now, (α28)(β8)=(t228)(2t8)

=(8t428)(2t8)           (Using (i))

=16t264t64t+256=16(t28t+16)

=16(t28t+4+12)=192.