Q 11 :    

Let the line L:2x+y=α pass through the point of the intersection P (in the first quadrant) of the circle x2+y2=3 and the parabola x2=2y. Let the line L touch two circles C1 and C2 of equal radius 23. If the centres Q1 and Q2 of the circle C1 and C2 lie on the y-axis, then the square of the areas of the triangle PQ1Q2 is equal to __________.          [2024]



(72)

We have, L : 2x+y=α

 x2+y2=3         ... (i)

  x2=2y             ... (ii)

Equation (i) and (ii) intersect at (2, 1) in first quadrant.

  P=(2,1)  and  α=2×2+1=3

 α=3

Radius of Circle C1 and C2=23

We centre C1 & C2 of two circle are (0, y1) and (0, y2) respectively.

We know that length of perpendicular from centre to the tangent = Radius of circle

 |2×0+y33|=23

 |y3|=6  y=9, 3

  y1=3, y2=9

  Centre of C1 and C2 are Q1(0, 3) and Q2(0, 9) respectively.

Q1Q2=12 units, Height of triangle =2 units

A = Area of triangle PQ1Q2=12×12×2

                                   [  Area of PQ1Q2=12×Q1Q2×height]

=62 sq. units

 A2=72.



Q 12 :    

Let P(α, β) be a point on the parabola y2=4x. If P also lies on the chord of the parabola x2=8y whose mid point is (1, 54), then (α28)(β8) is equal to __________.          [2024]



(192)

We α = t2, β = 2t

Now, equation of chord of the parabola x2=8y, bisected at (1, 54) is x·12×2(y+54)=110

 x4y5=9  x4y+4=0

Now, (α, β) satisfies the above equation

  t28t+4=0            ... (i)

Now, (α28)(β8)=(t228)(2t8)

=(8t428)(2t8)           (Using (i))

=16t264t64t+256=16(t28t+16)

=16(t28t+4+12)=192.



Q 13 :    

Let the focal chord PQ of the parabola y2=4x make an angle of 60° with the positive x-axis, where P lies in the first quadrant. If the circle, whose one diameter is PS, S being the focus of the parabola, touches the y-axis at the point (0, α), then 5α2 is equal to :          [2025]

  • 15

     

  • 25

     

  • 20

     

  • 30

     

(1)

Let the coordinate of a point P be (t2,2t)

Coordinate of focus S of the parabola is (1, 0).

Now, tan 60°=2t0t21=3 3t22t3=0

 (3t+1)(t3)=0  t=3          { P lies in first quadreant}

 P(3,23)

Equation of circle is (x1)(x3)+(y0)(y23)=0

At x = 0,  3+y223y=0

 (y3)2=0 y=3

 y=3=α

  5α2=15.



Q 14 :    

Let the point P of the focal chord PQ of the parabola y2=16x be (1, –4). If the focus of the parabola divides the chord PQ in the ratio m : n, gcd (m, n) = 1, then m2+n2 is equal to :          [2025]

  • 10

     

  • 17

     

  • 26

     

  • 37

     

(2)

End point of the focal chord PQ of the parabola y2=4ax is P(at2,2at)

Now, we have parabola y2=16x

  P(4t2,8t)=(1,4)

 t=12

   Point Q is given by (at2,2at)=(16,16)

Now, focus of parabola y2=16x is (4, 0)

Focus (4, 0) divides P(1, –4) and Q(16, 16) in ratio m : n

 (4,0)=(16m+nm+n,16m4nm+n)

 16m4n=0  4m=n  mn=14

 m=1, n=4          [ gcd(m, n) = 1]

  m2+n2=1+16=17.

 

 



Q 15 :    

The radius of the smallest circle which touches the parabolas y=x2+2 and x=y2+2 is          [2025]

  • 722

     

  • 7216

     

  • 724

     

  • 728

     

(4)

The given parabolas are symmetric about the line y = x.

Tangents at A and B must be parallel to line y = x, so slope of the tangents = 1, which is minimum.

(dydx)min A=1=(dydx)min B

For point By=x2+2

 dydx=2x=1

When x=12  y=94

  Point B=(12,94)

Similarly, point A=(94,12)

AB=(1294)2+(9412)2=9816=724

Radius = 7242=728.



Q 16 :    

The axis of a parabola is the line y = x and its vertex and focus are in the first quadrant at distances 2 and 22 units from the origin, respectively. If the point (1, k) lies on the parabola, then a possible value of k is :          [2025]

  • 8

     

  • 4

     

  • 3

     

  • 9

     

(4)

For the parabola, axis is y = x

 Directrix is x + y = 0

Also, vertex and focus are of 2 and 22 from origin

 Vertex is (1, 1) and focus = (2, 2)

The point P(1, k) lies on parabola.

Using definition of parabola

         PS = PM

 (12)2+(k2)2=1+k2

 k210k+9=0

 (k9)(k1)=0

   k = 9 and k = 1.



Q 17 :    

Let P be the parabola, whose focus is (–2, 1) and directrix is 2x + y + 2 = 0. Then the sum of the ordinates of the points on P, whose abscissa is –2, is          [2025]

  • 52

     

  • 32

     

  • 34

     

  • 14

     

(2)

Equation of parabola.

         (x+2)2+(y1)2=(2x+y+25)2

 5[(x+2)2+(y1)2]=(2x+y+2)2          ... (i)

Put x = –2, in equation (i),

         5(y1)2=(y2)2

 5(y22y+1)=y24y+4

 4y26y+1=0

   The sum of ordinates, y1+y2=32.



Q 18 :    

Let the parabola y=x2+px3, meet the coordinate axes at the points P, Q and R. If the circle C with centre at (–1, –1) passes through the points P, Q and R, then the area of PQR is :          [2025]

  • 7

     

  • 4

     

  • 6

     

  • 5

     

(3)

Given, equation of parabola is y=x2+px3 and equation of circle with centre at (–1, –1) is

         (x+1)2+(y+1)2=r2          ... (i)

Let P(α, 0), Q(β, 0) and R(0, –3) are the three points.

Now, circle passes through point R(0, –3)

 1+(2)2=r2  5=r2

Put y = 0 in equation (i), we get

         (x+1)2+1=5

 (x+1)2=4  x=1 or x=3

 Point are P(1, 0) and (–3, 0)

  Area of PQR=12|101301031|=6 sq. units



Q 19 :    

Let P(4,43) be a point on the parabola y2=4ax and PQ be a focal chord of the parabola. If M and N are the foot of perpendiculars drawn from P and Q respectively on the directrix of the parabola, then the area of the quadrilateral PQMN is equal to :          [2025]

  • 3433

     

  • 34338

     

  • 26338

     

  • 173

     

(2)

Since, P(4,43) lies on y2=4ax

 48=4a(4)  4a=12

 y2=12x is equation of parabola

Let (4,43) be (at2,2at)  t=23

As PQ is focal chord

  Q(at2,2at)=(94,33)

Area of trapezium PQNM

=12MN(PM+QN)

=12MN(PS+QS)          [by definition of parabola]

=12×MN×PQ

=12×73(494)=(343)38.



Q 20 :    

If the line 3x – 2y + 12 = 0 intersects the parabola 4y=3x2 at the points A and B, then at the vertex of the parabola, the line segment AB subtends an angle equal to          [2025]

  • tan1(119)

     

  • tan1(97)

     

  • tan1(45)

     

  • π2tan1(32)

     

(2)

Given, 3x – 2y + 12 = 0

 y=3x+122

Put value of 'y' in 4y=3x2, we get

 2(3x+12)=3x2

 x22x8=0  x=2,4

   y = 3, 12

Let A(–2, 3) and B(4, 12)

Since, vertex of parabola is O(0, 0).

  mOA=32, mOB=124=3

  tan θ=|mOAmOB1+mOA×mOB|=|3231+(32)×3|

 tan θ=97  θ=tan1(97).