Q 11 :    

Four distinct points (2k, 3k), (1, 0), (0, 1) and (0, 0) lie on a circle for k equal to :            [2024]

  • 213

     

  • 513

     

  • 313

     

  • 113

     

(2)

Let the equation of circle be

(xx1)2+(yy1)2=r2          ...(i)

Put x = 0, y = 0 in (i), we get

 x12+y12=r2          ... (ii)

Put x = 0, y = 1 in (i), we get

 x12+(1y1)2=r2          ... (iii)

From (ii) and (iii), we get

y12=(1y1)2  y12=1+y122y1  y1=12

Put x = 1, y = 0 in (i), we get

(1x1)2+y12=r2          ... (iv)

From (ii) and (iv), we get

(1x1)2=x12  1+x122x1=x12  x1=12

  From (ii), we get r =12

Putting x1=y1=12 and r=12 in (i), we get

(x12)2+(y12)2=12

Point (2k, 3k) also satisfies the equation of circle.

(2k12)2+(3k12)2=12

 4k2+142k+9k2+143k=12

 13k2=5k  k=513



Q 12 :    

If the circles (x+1)2+(y+2)2=r2 and x2+y24x4y+4=0 intersect at exactly two distinct points, then          [2024]

  • 5 < r < 9

     

  • 3 < r < 7

     

  • 0 < r < 7

     

  • 12<r<7

     

(2)

Let P : (x+1)2+(y+2)2=r2 and Q : x2+y24x4y+4=0 be two given circles.

Q can be written as (x2)2+(y2)2=4

Centre of circle P and Q are (–1, –2) and (2, 2) respectively

Distance between centre of circle is given by

D=(2+1)2+(2+2)2=9+16=25=5 units

For the intersection of circles, D>|rPrQ| and D<(rP+rQ), where rP and rQ are radius of circle P and Q respectively

 5>|r2| and 5 < r + 2

 5<r2<5  3<r<7          ... (i)

and  r > 3                                                                ... (ii)

From (i) and (ii), 3 < r < 7.

 



Q 13 :    

If one of the diameters of the circle x2+y210x+4y+13=0 is a chord of another circle C, whose centre is the point of intersection of the lines 2x + 3y = 12 and 3x –2y = 5, then the radius of the circle C is :          [2024]

  • 6

     

  • 4

     

  • 20

     

  • 32

     

(1)

Given, 2x + 3y = 12

3x – 2y = 5

[Figure]

Point of intersection = (3, 2)

  Centre is (3, 2)

      l=4+16=25

      l2+R2=r2

 20+(25+413)=r2

 20+16=r2  r=6



Q 14 :    

Let a variable line passing through the centre of the circle x2+y216x4y=0, meet the positive co-ordinate axes at the points A and B. Then the minimum value of OA + OB, where O is the origin is equal to          [2024]

  • 18

     

  • 20

     

  • 12

     

  • 24

     

(1)

Given circle is x2+y216x4y=0

Centre is (– g, – f)

Now, 2g = 16 g = 8 and 2f = 4 f = 2

  Centre is (8, 2)

[Figure]

Equation of line l1 is          ... (i)

y – 2 = m(x – 8)

Equation (i) cuts the x-axis then y = 0

2m=x8  x=8m2m=OA

Equation (i) cuts the y-axis, then x = 0

y – 2 = – 8m y = 2 – 8m = OB

Let l=OA+OB=8m2m+28m=108m2m          ... (ii)

Differentiate (ii) w.r.t. m we get

dldm=8+2m2          ... (iii)

dldm=0  8+2m2=0  m=±12

Differentiate (iii), w.r.t. m, we get

d2ldm2=4m3

Now, d2ldm2|m=12=4(12)3 =32 and d2ldm2|m=12  =4(12)3 =32

 d2ldm2>0  at  m=12

Hence, minima occurs at m=12

So, the minimum value of l is

=108×(12)2(2)=10+4+4=18.



Q 15 :    

Let the maximum and minimum values of (8x x212 4)2+(x-7)2, xR be M and m, respectively. Then M2m2 is equal to __________.          [2024]



(1600)

Let y = 8xx212

 y2=8xx212

           =(x28x+16)+4=(x4)2+4

(x4)2+y2=4          ... (i)

which is a circle with centre (4, 0) and radius 2.

[Figure]

Now, (y4)2+(x7)2 represent distance of (x, y) from (7, 4)

M = Maxium distance = (27)2+(04)2=25+16=41

m = Minimum distance = Distance between P and (7, 4)

where P is the intersection of circle with line joining (4, 0) and (7, 4).

Now, equation of line joining (4, 0) and (7, 4) is given by

(y0)=4074(x4)

i.e.y = 43(x4)

On substituting the value of y is in (i), we get

(x4)2+169(x4)2=4

 (x4)2[259]=4  (x4)2=3625  x4=±65

 x=65+4=265, y=85         (Neglect negative sign)

So, m=(2657)2+(854)2=8125+14425=22525=9

  M2m2=41292=1600.



Q 16 :    

Let the centre of a circle, passing through the points (0, 0), (1, 0) and touching the circle x2+y2=9, be (h, k). Then for all possible values of the coordinates of the centre (h, k), 4(h2+k2) is equal to _________.          [2024]



(9)

Circle will touch internally

 C1C2=|r1r2|

 h2+k2=3h2+k2  2h2+k2=3

 h2+k2=94     4(h2+k2)=9.



Q 17 :    

Consider a circle (xα)2+(yβ)2=50, where α,β>0. If the circle touches the line y + x = 0 at the point P, whose distance from the origin is 42, then (α+β)2 is equal to __________.          [2024]



(100)

We have circle,

(xα)2+(yβ)2=50

[Figure]

Centre of (i), is C(α,β) and radius, r=52

 CP=r

|α+β2|=52

 |α+β|=10  (α+β)2=100.



Q 18 :    

Equations of two diameters of a circle are 2x – 3y = 5 and 3x – 4y = 7. The line joining the points (227,4) and (17,3) intersects the circle at only one point P(α,β). Then 17βα is equal to __________.            [2024]



(2)

Solving 2x – 3y = 5 and 3x – 4y = 7, we get x = 1 and y = –1

[Figure]

Now, equation of tangent joining the points (227,4) and (17,3) is

y+4=3+417+227(x+227)  3(y+4)=7(x+227)

 7x3y+10=0

α,β be the foot of perpendicular from point (1, –1) to the line 7x – 3y + 10 = 0.

 α17=β+13=(7(1)3(1)+10)(3)2+72=2058=1029

 α=7029+1=4129, β=30291=129

 17βα=1729+4129=5829=2.



Q 19 :    

Consider two circles C1 : x2+y2=25 and C2 : (xα)2+y2=16, where α(5,9). Let the angle between the two radii (one to each circle) drawn from one of the intersection points of C1 and C2 be sin1(638). If the length of common chord of C1 and C2 is β, then the value of (αβ)2 equals __________.          [2024]



(1575)

We have,

C1 : x2+y2=25  or  C2 : (xα)2+y2=16

[figure]

Let θ be the angle between two radii

 θ=sin1638

 sinθ=638

Area of OAB=12×4×5sinθ

 12×α×β2=10638  αβ=563  (αβ)2=1575.