Q 1 :    

Consider a hyperbola H having centre at the origin and foci on the x-axis. Let C1 be the circle touching the hyperbola H and having the centre at the origin. Let C2 be the circle touching the hyperbola H at its vertex and having the centre at one of its foci. If areas (in sq. units) of C1 and C2 are 36π and 4π, respectively, then the length (in units) of latus rectum of H is          [2024]

  • 283

     

  • 143

     

  • 103

     

  • 113

     

(1)

         C1:x2+y2=a2

 Area=πa2=36π  a=6

         C2:(xae)2+y2=(aea)2

 Area=π(aea)2=4π  36(e1)2=4

 e1=13  e=43  b2=28

  Length of Latus Rectum = 2b2a=2×286=283 units.



Q 2 :    

Let H : x2a2 + y2b2 = 1 be the hyperbola, whose eccentricity is 3 and the length of the latus rectum is 43. Suppose the point (α, 6), α > 0 lies on H. If β is the product of the focal distances of the point (α, 6), then α2 + β is equal to          [2024]

  • 169

     

  • 171

     

  • 172

     

  • 170

     

(2)

H : y2b2  x2a2 = 1 and e=3

Now, e=1+a2b2=3

  a2b2=2  a2=2b2

Length of latus rectum =2a2b=4b2b=4b=43        [Given]

 b=3  a=6           [  a > 0]

Now, P(α, 6) lies on H : y23  x26 = 1

 12α26=1  α2=66

Now, foci of hyperbola = (0, ±be) = (0, ±3)

Let d1 and d2 be focal distancee of (α, 6)

 d1=α2+(63)2,   d2=α2+(6+3)2

 d1=66+9,   d2=66+81

           d1=75,   d2=147

Now, β=d1d2=11025=105

Now, α2+β=66+105=171.



Q 3 :    

Let the foci of a hypebola H coincide with the foci of the ellipse E : (x1)2100+(y1)275=1 and the eccentriticy of the hyperbola H be the reciprocal of the eccentricity of the ellipse E. If the length of the transverse axis of H is α and the length of its conjugate axis is β, then 3α2+2β2 is equal to          [2024]

  • 237

     

  • 225

     

  • 205

     

  • 242

     

(2)

Eccentricity of ellipse E i.e., eE=1b2a2

=175100=25100=12

So, eccentricity of hyperbola = 2

Now, foci of ellipse = (1 ± ae, 1) = (1 ± 5, 1)

= (6, 1) and (–4, 1) = Foci of hyperbola

Now, distance between foci = 2aeH

 102+0=4a  a=52

Also,  eH2=1+b2a2

 (2)2=1+4b225  754=b2  b=752

Length of transverse axis of H = 2a2×52

 α=5

Length of conjugate axis of H = 2b = 75

 β=75

Now, 3α2+2β2=75+150=225.



Q 4 :    

For 0 < θ < π/2, if the eccentricity of the hyperbola x2y2 cosec2 θ=5 is 7 times eccentricity of the ellipse x2 cosec2 θ + y2=5, then the value of θ is          [2024]

  • π/6

     

  • π/3

     

  • 5π/12

     

  • π/4

     

(2)

Given, x25y25 sin2θ=1

a=5>b=5sinθ

e=1+b2a2=1+sin2θ          ... (i)

Also, x25 sin2θ+y25=1          (Given)

a=5sinθ<b=5

e=1a2b2=1sin2θ          ... (ii)

Given, eqn. (i) =  7 eqn. (ii)

1+sin2θ=71sin2θ

Squaring on both sides.

1+sin2θ=7(1sin2θ)  1+sin2θ=7 7sin2θ

 8 sin2θ=6

sin2θ=68=34  sin θ=32

So, θ=π3.



Q 5 :    

Let e1 be the eccentricity of the hyperbola x216y29=1 and e2 be the eccentricity of the ellipse x2a2+y2b2=1, a > b, which passes through the foci of the hyperbola. If e1e2=1, then the length of the chord of the ellipse parallel to the x-axis and passing through (0, 2) is          [2024]

  • 45

     

  • 1053

     

  • 853

     

  • 35

     

(2)

Given hyperbola is x216y29=1

e1 = eccentricity of hyperbola = 16+94=54

Foci of hyperbola = (±5, 0)

Given e1e2=1

 e2=45 = eccentricity of ellipse x2a2+y2b2=1

a2b2a=45          ... (i)

  The ellipse also passes through the foci of the hyperbola.

 a2=25

From (i), b2=9

Thus, the equation of ellipse is x225+y29=1          ... (ii)

Now, equation of chord of ellipse which passes through (0, 2) and parallel to x-axis is y = 2.

From (ii),

x225=59  x2=25×59  x=±553

Thus, the end point of chord are (553,2)  and  (553,2).

  Length of chord = (553+553)2+(22)2=1053.



Q 6 :    

Let P be a point on the hyperbola H : x29y24=1 in the first quadrant such that the area of triangle formed by P and the two foci of H is 213. Then, the square of the distance of P from the origin is          [2024]

  • 20

     

  • 18

     

  • 26

     

  • 22

     

(4)

We have, x29y24=1

Here, a2=9, b2=4

b2=a2(e21)  e2=1+b2a2  e2=1+49=139

 e=133  s1s2=2ae=2×3×133=213

Area of PS1S2=12×β×s1s2=213

 12×β×(213)=213  β=2

α29β24=1  α29=2 α2=18  α=32

Distance of P from origin = α2+β2=18+4=22.



Q 7 :    

If the foci of a hyperbola are same as that of the ellipse x29+y225=1 and the eccentricity of the hyperbola is 158 times the eccentricity of the ellipse, then the smaller focal distance of the point (2,14325) on the hyperbola, is equal to          [2024]

  • 72583

     

  • 1425165

     

  • 142543

     

  • 725+83

     

(1)

We have, E : x29+y225=1

            a=5, b = 3

foci : (0, ±5e)

Since, for an ellipes, b2=a2(1e2)  9=25(1e2)

e2=1925=1625  e=45

Eccentricity of hyperbola = e'=158×45=32

Focus of hyperbola = (0, ±5e) = (0, ±4)

 a·e'=4  a=4×23=83

Since, e'2=1+b2a2  94=1+b21×964  b2=809

   The equation of hyperbola 9y2649x280=1

PS = e'pM

        =32×(14325169)

        =72583.



Q 8 :    

Let A be a square matrix of order 2 such that |A| = 2 and the sum of its diagonal elements is –3. If the points (x, y) satisfying A2 + xA + yI = O lie on a hyperbola, whose transverse axis is parallel to the x-axis, eccentricity is e and the length of the latus rectum is l, then e4+l4 is equal to ___________.          [2024]



(*)

The given data is inadequate.



Q 9 :    

The length of the latus rectum and directrices of a hyperbola with eccentricity e are 9 and x=±43, respectively. Let the line y3x+3=0 touch this hyperbola at (x0, y0). If m is the product of the focal distances of the point (x0, y0), then 4e2+m is equal to __________.          [2024]



(*)

Equation of tangent to hyperbola is given by y=mx±a2m2b2

 m=3

and  a2m2b2=3

 3a2b2=3          ... (i)

Now, length of latus rectum of hyperbola = 9

 2b2a=9

 b2=9a2          ... (ii)

From equation (i) and (ii), we get

3a29a2=3

 6a29a6=0  2a23a2=0

 2a24a+a2=0  (2a+1)(a2)=0

 a=2, 12 (ignore)  a=2  and  b=3

Equation of hyperbola is x24y29=1

Solving for tangent y=3x3, we get

x243x2+36x9=1

 9x212x212+24x=36

 3x224x+48=0

 x28x+16=0  (x4)2=0

 x=4  and  y=33, e=1+94=132

So, (x0,y0)(4,33) is the point of contact.

Focus of hyperbola is (±13, 0)

  PF1·PF2

    =((413)2+(33)2)((4+13)2+(33)2)

    =2304=48=m

  4e2+m=4×13/4+48=61

Note: Here equation of directrix should be x=±413, but in given question it is given x=±43 which is wrong because eccentricity should be greater than 1, So, this question is bonus.



Q 10 :    

Let S be the focus of the hyperbola x23y25=1, on the positive x-axis. Let C be the circle with its centre at A(6,5) and passing through the point S. If O is the origin and SAB is a diameter of C, then the square of the area of the triangle OSB is equal to __________.          [2024]



(40)

x33y25=1 a= 3, b=5

  e=1+53  e=83

  ae=8=22        S=(22, 0)

A is mid-point of BS  B(2622,25)

Area of (OSB)A=|12|00122012622251||=210

 A2=40.