Q 71 :    

Let a straight line L pass through the point P(2, –1, 3) and be perpendicular to the lines x12=y+11=z32 and x31=y23=z+24. If the line L intersects the yz-plane at the point Q, then the distance between the points P and Q is :          [2025]

  • 10

     

  • 2

     

  • 3

     

  • 23

     

(3)

Vector parallel to line L=|i^j^k^212134|

=10i^10j^+5k^=5(2i^2j^+k^)

Equation of line L passing through point P(2, –1, 3) and parallel to vector (2i^2j^+k^), is

x22=y+12=z31=λ

  x=2λ+2, y=2λ1, z=λ+3

  Line L intersects the yz-plane

  2λ+2=0  λ=1

Hence, point Q is (0, 1, 2)

Distance between point P(2, –1, 3) and Q(0, 1, 2)

=(02)2+(1+1)2+(23)2=9=3.



Q 72 :    

Let the area of the triangle formed by the lines x + 2 = y – 1 = z, x35=y1=z11 and x3=y33=z21 be A. Then A2 is equal to __________.          [2025]



(56)

L1:x+2=y1=z=λ (say)

L2:x35=y1=z11=μ (say)

L3:x3=y33=z21=δ (say)

Any point of line L1, L2 and L3 is given by (λ2,λ+1,λ)(5μ+3,μ,μ+1) and (3δ,3δ+3,δ+2) respectively.

Point of intersection of L1 and L2 is given by

               λ2=5μ+3λ+1=μλ=μ+1}  λ=0, μ=1

   Point of intersection is A(–2, 1, 0).

Point of intersection of L2 and L3 is given by

               5μ+3=3δμ=3δ+3μ+1=δ+2}  μ=0, δ=1

   Point of intersection is B(3, 0 , 1).

Point of intersection of L1 and L3 is given by

               λ2=3δλ+1=3δ+3λ=δ+2}  λ=2, δ=0

   Point of intersection is C(0, 3, 2).

Now, Area of ABC=12|AB×BC|

  A=12||i^j^k^511331||

                =12|4i^+8j^12k|^

                =1216+64+144=56

  A2=56.



Q 73 :    

Let L1:x13=y11=z+10 and L2:x22=y0=z+4α, αR be two lines, which intersect at the point B. If P is the foot of perpendicular from the point A(1, 1, –1) and L2, then the value of 26α(PB)2 is __________.             [2025]



(216)

Point B(3μ+1,μ+1,1)(2λ+2,0,αλ4)

 3μ+1=2λ+2, μ+λ=0, λα4=1

  μ=1  λ=1 and α=3

So, point B(4, 0, –1).

Let point P is (2k + 2, 0, 3k – 4).

So, Dr's of AP is < 2k + 1, –1, 3k – 3 >

Since, L2AP

 2(2k+1)+0(1)+3(3k3)=0

 4k+2+9k9=0  k=713

  Point P(4013,0,3113)

  (PB)2=(40134)2+(00)2+(3113+1)2=468169

  26α(PB)2=26×3×468169=216.



Q 74 :    

Let P be the image of the point Q(7, –2, 5) in the line L:x12=y+13=z4 and R(5, p, q) be a point on L. Then the square of the area of PQR is __________.          [2025]



(957)

Given, x12=y+13=z4 and R(5, p, q) be on the line.

Here P be the image of point.

Since, R is on the line L, then 

R(2λ+1,3λ1,4λ)=(5,p,q)   [Given]

 2λ+1=5

 2λ=4  λ=2

  R(5,5,8)

Since, T is also on the line L, then

T(2μ+1,3μ1,4μ)

Now, QT=(2μ6)i^+(3μ+1)j^+(4μ5)k^

and b=2i^+3j^+4k^ (Normal)

Taking QT·b=0

 4μ12+9μ+3+16μ20=0  29μ29=0

 μ=1

  T(3,2,4)

 QT=(73)2+(22)2+(54)2

                =16+16+1=33  PQ=233

Similarly, RT=29

 Area of PQR=12×29×233=29×33

 (Area of PQR)2=(29×33)2=29×33=957.