Q 51 :    

If the shortest distance between the lines x12=y23=z34 and x1=yα=z51 is 56, then the sum of all possible values of α is          [2025]

  • –3

     

  • 32

     

  • 32

     

  • 3

     

(1)

The given lines are L1:x12=y23=z34 and L2:x1=yα=z51,

n=|i^j^k^2341α1|

=i^(34α)j^(24)+k^(2α3)

=i^(34α)j^(2)+k^(2α3)

Shortest distance = |BA·n|n||=|(i^+2j^2k^)·n|n||=56          [Given]

=|138α(34α)2+4+(2α3)2|=56

 6(138α)2=25((4α3)2+(2α3)2+4)

 6(64α2208α+169)=(25(20α236α+22))

 116α2+348α464=0

   Sum of roots α1 and α2=348116=3.



Q 52 :    

Let the line L pass through (1, 1, 1) and intersect the lines x12=y+13=z14 and x31=y42=z1. Then which of the following points lies on the line L?       [2025]

  • (10, –29, –50)

     

  • (4, 22, 7)

     

  • (7, 15, 13)

     

  • (5, 4, 3)

     

(3)

Equation of line L passes through (1, 1, 1) is L:x1a=y1b=z1c, where a, b, c are direction ratios.

Let L1:x12=y+13=z14=λ (say)

Any point on L1 be A(2λ+1,3λ1,4λ+1)

Let L2:x31=y42=z1=μ (say)

Any point on L2 be B(μ+3,2μ+4,μ)

Direction ratio of L be : <2λ,3λ2,4λ> or <μ+2,2μ+3,μ1>

Now, 2λμ+2=3λ22μ+3=4λμ1  λ=65 and μ=5

  <a,b,c><3,7,6> or <3,7,6>

  L:x13=y17=z16

Hence, (7, 15, 13) lies on the line.



Q 53 :    

If the equation of the line passing through the point (0,12,0) and perpendicular to the lines r=λ(i^+aj^+bk^) and r=(i^j^6k^)+μ(bi^+aj^+5k^) is x12=y+4d=zc4, then a + b + c + d is equal to :          [2025]

  • 12

     

  • 10

     

  • 14

     

  • 13

     

(3)

Since, given line is perpendicular to both the line, i.e., (i^+aj^+bk^)×(bi^+aj^+5k^)

Also, parallel vector along the required line is

     (i^+aj^+bk^)×(bi^+aj^+5k^)

=(5aab)i^(b2+5)j^+(a+ab)k^

   Dr's of required lines are (5aab), (b2+5), (a+ab)

But given Dr's of required line are –2, d, –4

  5aab2=(b2+5)d=a+ab4          ... (i)

Since, point (0,12,0) lies on x12=y+4d=zc4,

 012=12+4d=0c4  d=7, c=2

From (i), 5aab2=b257=a+ab4

5a-ab-2=a+ab-4-20a+4ab=-2a-2ab18a=6abb=3|-b2-57=a+ab-44b2+20=7a+7ab36+20=7a+21a56=28aa=2

   a + b + c + d = 2 + 3 + 2 + 7 = 14



Q 54 :    

Consider the lines L1 : x – 1 = y – 2 = z and L2 : x – 2 = y = z – 1. Let the feet of the perpendiculars from the point P(5, 1, –3) on the lines L1 and L2 be Q and R respectively. If the area of the triangle PQR is A, then 4A2 is equal to :          [2025]

  • 147

     

  • 143

     

  • 139

     

  • 151

     

(1)

We have, the point P(5, 1, –3)

L1 : x – 1 = y – 2 = zλ (say)

L2 : x – 2 = y = z – 1 = μ (say)

Any point on L1 and L2 are given by Q(λ+1,λ+2,λ) and R(μ+2,μ,μ+1) respectively.

       PQ=(λ4)i^+(λ+1)j^+(λ+3)k^

Since, PQL1, whose direction ratios are < 1, 1, 1 >, So we have

       1(λ4)+1(λ+1)+1(λ+3)=0

 3λ=0  λ=0

   Q(1, 2, 0) is the foot of perpendicular on L1. Similarly,

       PR=(μ3)i^+(μ1)j^+(μ+4)k^

Now, PQL2, whose direction ratios are < 1, 1, 1 >, so we have

      1(μ3)+1(μ1)+1(μ+4)=0

 3μ4+4=0  μ=0

   R(2, 0, 1) is foot of perpendicular on L2.

Now, area PQR=12|PQ×PR|

 A=12||i^j^k^413314||=12|7i^+7j^+7k^|=732

  4A2=4×(12×73)2=147



Q 55 :    

Let the values of λ for which the shortest distance between the lines x12=y23=z34 and xλ3=y44=z55 is 16 be λ1 and λ2. Then the radius of the circle passing through the points (0, 0), (λ1,λ2) and (λ2,λ1) is          [2025]

  • 3

     

  • 4

     

  • 23

     

  • 523

     

(4)

a=2i^+3j^+4k^ and b=3i^+4j^+5k^

represents direction vector of the given lines.

  a×b=|i^j^k^234345|

=i^(1516)j^(1012)+k^(89)=i^+2j^k^

The given lines passes through p1=i^+2j^+3k^ and p2=λi^+4j^+5k^

  p2p1=(λ1)i^+2j^+2k^

Shortest distance between given lines =|(p2p1)·(a×b)|a×b||

 16=|λ+1+421+4+1|

 |λ+3|=1 λ=3±1  λ=4,2

Radius of circle passing through points (0, 0), (4, 2), (2, 4) is given by abc4.

=20×20×84×12 |111042024|=20×222×12=523



Q 56 :    

Let L1:x12=y23=z34 and L2:x23=y44=z55 be two lines. Then which of the following points lies on the line of the shortest distance between L1 and L2?          [2025]

  • (53,7,1)

     

  • (2,3,13)

     

  • (143,3,223)

     

  • (83,1,13)

     

(3)

We have, L1:x12=y23=z34 and L2:x23=y44=z55

Let A(2λ+1,3λ+2,4λ+3) and B(3μ+2,4μ+4,5μ+5) lies on the line L1 and L2 respectively.

Direction ratios of AB is

<3μ2λ+1,4μ3λ+2,5μ4λ+2>

As ABL1, we have

2(3μ2λ+1)+3(4μ3λ+2)+4(5μ4λ+2)=0

 6μ4λ+2+12μ9λ+6+20μ16λ+8=0

 38μ29λ+16=0          ... (i)

Also, ABL2, we have

3(3μ2λ+1)+4(4μ3λ+2)+5(5μ4λ+2)=0

 50μ38λ+21=0          ... (ii)

Solving (i) and (ii), we get

λ=13 and μ=16

   Coordinate of A is (53,3,133) and B(32,103,256)

Equation of AB is given by

x5316=y313=z13316  x53=y32=z133

   Point (143,3,223) lies on line AB.



Q 57 :    

The perpendicular distance, of the line x12=y+21=z+32 from the point P(2, –10, 1) is:          [2025]

  • 6

     

  • 35

     

  • 52

     

  • 43

     

(2)

x12=y+21=z+32=λ (say)

Any point on the line is given by

M(x,y,z)(2λ+1,λ2,2λ3)

Also, PM=(2λ+12)i^+(λ2+10)j^+(2λ31)k^

=(2λ1)i^+(λ+8)j^+(2λ4)k^          ... (i)

  PM·n=0

 (2λ1)2+(λ+8)(1)+(2λ4)2=0

 4λ2+λ8+4λ8=0

 9λ18=0  λ=2

  |PM|=32+62+02=45=35          [Using (i)]



Q 58 :    

Let a line pass through two distinct pointsP(–2, –1, 3) and Q, and be parallel to the vector 3i^+2j^+2k^. If the distance of the point Q from the point R(1, 3, 3) is 5, then the square of the area of PQR is equal to :          [2025]

  • 136

     

  • 144

     

  • 148

     

  • 140

     

(1)

Equation of line passing through P(–2, –1, 3) and parallel to vector 3i^+2j^+2k^ is x+23=y+12=z32.

Let x+23=y+12=z32=λ

 Q=(3λ2,2λ1,2λ+3), λ{0}

Also, |QR|=5=(3λ3)2+(2λ4)2+(2λ)2

   17λ234λ+25=25  λ=2      ( λ0)

         Q(4, 3, 7), P(–2, –1, 3), R(1, 3, 3)

   Area of PQR=12|PQ×PR|

=12||i^j^k^644340||

=|8i^+6j^+6k^|=136      2=136



Q 59 :    

Let P be the foot of the perpendicular from the point Q(10, –3, –1) on the line x37=y21=z+12. Then the area of the right angled triangle PQR, when R is the point (3, –2, 1), is          [2025]

  • 815

     

  • 30

     

  • 915

     

  • 330

     

(4)

Let x37=y21=z+12=λ then

Point P=(7λ+3,λ+2,2λ1)

Now, Dr's of QP=(7λ7,λ+5,2λ)

  (7λ7)(7)+(λ+5)(1)+(2λ)(2)=0

 49λ49+λ5+4λ=0  λ=1

  P=(10,1,3)

  PQ=4j^+2k^, PR=7i^3j^+4k^           [ R = (3, –2, 1)]

  Area of PQR=12|i^j^k^042734|

                                         =12|10i^14j^28k^|

                                         =12100+196+784=330 sq. units.



Q 60 :    

If the square of the shortest distance between the lines x21=y12=z+33 and x+12=y+34=z+55 is mn, where m, n are coprime numbers, then m + n is equal to :          [2025]

  • 6

     

  • 14

     

  • 21

     

  • 9

     

(4)

We have, a1=2i^+j^3k^, b1=i^+2j^3k^

a2=i^3j^5k^, b2=2i^+4j^5k^

Now, b1×b2=|i^j^k^123245|=2i^j^

and a2a1=3i^4j^2k^

   The shortest distance (d) between given lines

=|(a2a1)·(b1×b2)||(b1×b2)|  d=25  d2=45

  m=4, n=5  m+n=9